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Two-degree-of-freedom Hamiltonian for the time-symmetric two-body
problem of the relativistic action-at-a-distance electrodynamics

Efrain Buksman Hollander and Jayme De Ltica
Universidade Federal de”®aCarlos, Departamento de §ica, Rodovia Washington Luis, km 235, Caixa Postal 676, Garlos,
Sa Paulo 13565-905, Brazil
(Received 28 September 2002; published 27 February)2003

We find a two-degree-of-freedom Hamiltonian for the time-symmetric problem of straight line motion of
two electrons in direct relativistic interaction. This time-symmetric dynamical system appeared 100 years ago
and it was popularized in the 1940s by the work of Wheeler and Feynman in electrodynamics, which was left
incomplete due to the lack of a Hamiltonian description. The form of our Hamiltonian is such that the action
of a Lorentz transformation is explicitly described by a canonical transformaétiith rescaling of the evolu-
tion parameter The method is closed and defines the Hamitonian in implicit form without power expansions.
We outline the method with an emphasis on the physics of this complex conservative dynamical system. The
Hamiltonian orbits are calculated numerically at low energies using a self-consistent steepest-descent method
(a stable numerical method that chooses only the nonrunaway solufioe two-degree-of-freedom Hamil-
tonian suggests a simple prescription for the canonical quantization of the relativistic two-body problem.
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[. INTRODUCTION practically interacts with a completely absorbing universe,
the response of this universe to the electron’s field is equiva-
The class of equivariant dynamical systems under théent to thelocal Lorentz-Dirac self-interaction theor}7]
Poincafegroup has enormous relevance to physics and yewithout the need of mass renormalizati8]. It is amusing
to date, only the one-body relativistic motion, is fully under- to understand that the classical radiative phenomena of Max-
stood. Already with two bodies in relativistic motion, one Well's electrodynamics can be described as a limiting case of
encounters the no-interaction theorem: a group theoreticdhis direct-interaction theorycomplete absorption is added
obstacle to the Hamiltonian description of relativistic two- {0 the theory as a simple model to uncouple it from the
particle motion[1]. The no-interaction theorem can be over- detailed neutral-delay dynamics of the other charges of the
come by covariant constraint dynamig®|, but one is left universe; for othelr I_|m|ts see RgB). .
with the few cases where the constraint scheme closes. F%r For the relativistic two-body system of the action-at-a-
example, for an equivariant physical theory like the time- Istance electrodynam|c§, genergl splutlon§ are not known
! . ) .~ . 7 and the only known special solution is the circular orbit for
symmetric electrodynamicE3], a constraint description is the attractive two-body problem, first found in Rg8] and
unknown. In this paper we present a reduction of the time]ater rediscovered in Ref10] (see, also Ref11]). Our.prob-
symmetric two-body problem of the relativistic action-at-a-

. ) lem has already been studied: the symmetric motion of two
d|st_ance electrodynamics to a two-degree-qf-freedom Hamilg|actrons along a straight lifie- x,(t) =x, (t) =x(t) ], which
tonian system along the nonrunaway solutions. The form of55 the following equation in the action-at-a-distance elec-
the Hamiltonian is such that a Lorentz transformation is eXtrodynamics:

plicitly described by a canonical transformation with rescal-

ing of the evolution parameter. The Hamiltonian orbits are d ( v ) e? 1—v(t—r)/c)
calculated numerically by a numerically stable self- Mol T T o2\ T — /e
consistent method that uses steepest-descent quenching and dtiV1-ie) 2r2|1+ult=nlc
chooses only the nonrunaway orbits. e [1+v(t+q)lc

In 1903, Schwarzchild proposed a relativistic type of in- + —2(_—/) (1)
teraction between charges that was time reversible precisely 2| 1-v(t+a)lc

because it involved retarded and advanced interactions sym—h =dx/dt is th locity of the first elect ¢
metrically [4]. The same model reappeared in the 1920s i/ erev( )a h IS edve 0%' y 0 tﬁ |tr's esc ronc,j Ot
the work of Tetrode and Fokk¢b] and it finally became an massm and chargeg, andr andq are the ime-cependen
interesting physical theory after Wheeler and Feynmargelay and advance, respectively, which are implicitly defined

showed that this direct-interaction theory can describe all th y the light-cone conditions

classical electromagnetic phenomeéna., the classical laws cr(t)=x(t)+x(t—r) )
of Coulomb, Faraday, Ampe, and Biot-Savayt[3,6]. An- '
other accomplishment was that Wheeler and Feynman cq(t) =x(t)+x(t+q),

showed in 1945 that in a certain limit where the electron
where ¢ is the speed of light. In general, a neutral-delay
equation such as Eqgl) and(2) requires an initial function
*Corresponding author. Email address: deluca@df.ufscar.or  as the initial condition, but for the special case of E@d3.

1063-651X/2003/6@)/02621915)/$20.00 67 026219-1 ©2003 The American Physical Society



E. B. HOLLANDER AND J. DE LUCA PHYSICAL REVIEW E67, 026219 (2003

and(2) it was proved in 1979 that for sufficiently low ener-

gies, the Newtonian initial conditiofx(0)=x, and v(0) SF:_f mldsl_f m,ds;

=v,] determines a unique symmetric solution that is glo-

bally defined(i.e., that does not run-away at some ppint B zf f VRTE

[12,13. This surprising uniqueness theorem reducing the ini- © A[x1=xl[*)x1- 20105, @

tial condition from an arbitrary function to two simple real
numbers(initial position and velocity already suggests that
the physical phase space could be isomorphic to a tw
degree-of-freedom Hamiltonian vector field, at least for low
velocities (which is what we find hepe The first numerical
method to solve Eqg1) and(2) was given in Ref[14] and

converged to solutions up te/c=0.94. Later, another and in our unitsc=1 [17]. The formal conserved energy
method[15] converged up t/c=0.99. _ associated with the Poincaievariance of the Fokker La-

In the following, we present a method to find the noNruN-grangian(3) is discussed in Ref$3,17], a nonlocal expres-
away solution of Eqs(l) and (2) with a two-degree-of- sjon involving an integral over a portion of the trajectory,
freedom Hamiltonian system. Our method is based on theyhich is not useful to the present work, even though we start
physics; it starts from the Fokker action and transforms thgrom the same Lagrangia(3).
neutral-advance-delay equation into two separeemil- The starting point of our method is a transformation to
tonianordinary differential equations for the same trajectorynew variables
in two different foliations. The Hamiltonians are defined in

wherex;(s;) represents the four-position of partidle-1,2
0F_)arametrized by its arc length, double bars stand for the
four-vector modulus||x; — X,|[?=(x;—X,) - (X;—X,), and
the dot indicates the Minkowski scalar product of four-
vectors with the metric tens@,, (9oo=1.911=922=033=
—1). The particles have masses, m,, common charge,

implicit form and can be solved explicitly in terms of the S=ti—X1, §=titXxg, (4)
arbitrary ghost functions by using the Hamilton-Jacobi _ _
theory. The condition that the two solutions describe the §2=0= X2, L=t X,

same trajectory poses a functional problem involving one ofag first noticed in Ref[16], this transformation splits the

the ghost functions, with known asymptotic form, which 4¢tion integral(3) into two separate local actions
must be solved self-consistently and is the basis of our nu-

merical calculation of the Hamiltonian orbits. We outline the SE=3(S,+Sy), (5)
method with an emphasis on the physics described by this

complex conservative dynamical system. The paper is orgé’y't

nized as follows. In Sec. Il we describe the bi-Lagrangian

method and solve explicitly for the motion resulting from the Sa=— f my(dé,dg) Y2 J my(dé,d ;)2
Hamiltonians. In Sec. Ill we discuss some consequences of

symmetry on the explicit solution of Sec. Il to reduce the ) 6(81—¢0)

number of arbitrary functions. In Sec. IV we determine an —e f fm(dgl(ﬂff dé&dfy),  (6)

equation to match the dynamics of one of the particles in the

two foliations, which turns out to involve only one of the and

ghost functions. In Sec. V we use steepest-descent quenching

to find the self-consistent Hamiltonian orbits. In Appendix A _ 112 112

we prove the twice-monotonic property for the arbitrary- Sb__f my(d§,dZy) —J my(dé2d{>)

mass case. Appendix B discusses an alternative covariant

derivation of the equal-mass case, and we also show here _ezf f 5(51_52)((15 di,+dédey) )
that the action of a Lorentz transformation on the Hamil- {1~ & e Zmer
tonian is represented by a canonical transformation with res-

caling of the evolution parameter. In Sec. VI we give thelt should be noticed that the double integral of E8) is
conclusions and discussion. reduced, after integration of th&function, to a single inte-

gral over the parameter of particle 1, with particle 2 contrib-
uting only at the advanced and retarded positions, this being
precisely the reason for the nonlocality of the theory, as il-
lustrated in Eq(1). The usefulness of parametrizatic$) is
Here we consider the isolated two-body system with rethat it naturally breaks the double integral of E8). into two
pulsive interaction, away from the other charges of the uniintegrals, each involving a differer function, and integra-
verse, a conservative time-reversible dynamical system ition over eachs function couples particle 1 with particle 2 at
the action-at-a-distance electrodynamics. The equations @fitherthe advanced positiofthe double integral included in
motion for two bodies in the action-at-a-distance electrody-S, of Eq. (6)] or at the retarded positidrthe double integral
namics of Wheeler and Feynm#8l, henceforth called 1D- included inS, of Eq. (7)]. For example, in actiois, of Eq.
WF2B, Egs.(1) and (2), are derived formally{16] by ex-  (6), the nonzero contribution of thé& function occurs where
tremizing the  Schwarzschild-Tetrode-Fokker  actionthe parameterg; and ¢, take equal values;;=¢,=¢, and
functional this £ is the natural independent parameter of the local action

II. OUTLINE OF THE METHOD
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S, (this parametrization is often named the front form of
dynamics in the literature and we henceforth call it tygpe- 1b?-
foliation). For actionS, of Eq. (7), integration over thes 60.0 1 ’
function produces a contribution to the integral only where
the two parameter§; andé, are equal, ang,=&,=¢ is the
natural time parameter of acti@y (henceforth called typée-
foliation). To gain some insight into the two types of folia-
tion, we notice that with type, the particles are automati-
cally in light-cone condition X; —x,)?— (t;—t,)?>=0, par-
ticle 2 always being ahead of particle 1 in time after the
choicex; —x,>0, with the light-cone distance being

ra=—3(&-&). 8

With type b parametrization, the particles are also in the
light-cone condition, with particle 2 behind in time and the
light-cone distance being

_1
=2l ©® FIG. 1. Particle trajectories in the CMF fam, #m; in the (x,t)

The first heuristic guide for this work, as first noticed in plane, arbitrary units wittt=1 ande’=m¢c’. Particle 1: casea
Ref.[16], is the simplicity of the Euler-Lagrange problem for indicated in branches: & (solid inner line on right and 1a°
partial action(6): after expressing actio(6) in terms of the  (hatched inner _Iine on right caseb iqdicated _in bran_chesbf‘
timelike parametet;, it is easily verified that the associated (hatched outer line on righnd 1" (solid outer line on right For
Euler-Lagrange equation is a simple ordinary differentialClarity we indicate the typa and typeb orbits of particle 1 as
equation (not a delay equation anymoreThe Euler- separqte curves, but there is just one or_blt for particle 1. Trajectory
Lagrange problem for actiofi7) is analogous, with! re- pf partlcle 2is represent_ed l_)y the sqlld line on left, branches are not

. . i ) indicated. The geometric distance in thet) plane between two
placed byé. To avoid confusion, we henceforth define thata_ .~ . o . . .
Lagrangian has docal form when the associated Euler- points in the light-cone condition ig2r, W'th ' pelng th.e spatial
Lagrange problem is defined by an ordinary diﬁerentiaIdIStance’ we have dropped th@ factor and indicated simply.
equation. In the search for a local Lagrangian problem, we
could try to extremize each of the partial action functionalsEuler-Lagrange equations for Eq20) and(11) be ordinary
of Egs. (6) and (7) and obtain a trajectory by solving the differential equations, which is the heuristic guide for choos-
Euler-Lagrange equation for eithé6,=0 or §S,=0. Each ing the functionalG. A functional G that leaves the two
separate minimization, in general, yields a different trajecSeparate problemd0) and(11) in local form is henceforth
tory, which is the time-asymmetric problem studied in sev-called a bilocal ghost Lagrangi&s. Here we consider sym-
eral works[18]. The main idea of our method is thiéithese ~ metric and time-reversible solutions of Ed) only, but for
two trajectories turn out to be equal, this common trajector)lhe variational calculus that follows, it is necessary to study
also extremizes the original action integréd), as 8Sz  such an orbit immersed in a family of orbits, defined as fol-
=158S,+368S,=0+0=0. Simply formulated as above, the lows: A time-reversible orbit naturally defines a preferred
problem turns out to be impossible; and it is possible toffame, the Lorentz frame where the orbit is time-reversible,
prove that the two separate solutions can never describe tf@d we henceforth call it the center of mass fra{@&F).
same orbit. To overcome this difficulty we need to postulaté/Ve consider in the CMF the family of all orbits such that the
a more general bi-Lagrangian problem by simultaneouslyrajectories of electrons 1 and 2 are both time reversible but

solving not necessarily equal(nonsymmetric orbits [x,(—1)
=x41(t)] and[x,(—t) =x,(t)], and with the physical prop-
6S,=6G (10 erty that both the advanced and retarded distances decrease
monotonically to a point of minimum and then start increas-
and ing monotonically again, as illustrated in Fig. 1. We hence-

forth call this family of orbits the CMF family. The fact that
the solution of Egs(1) and(2) has this piecewise monotonic

with G being a so far undetermined Lagrangian. A trajectoryPTOPerty is a consequence of the velocity being a monotonic
that satisfies Eq10) and(11) will also extremize the Fokker _unction of time, which was proved in Reff12] for suffi-

action(3), a simple consequence of EdS), (10), and(11): ciently low velocity orbits(in Appendix A we prove this
@ P q 49). (10 () assertion for the arbitrary-mass cas#e henceforth refer to

85Se=3%6S,+36S,=36G—36G=0. (12) a CMF orbit as a twice-monotonic orbit. Since the solution

we are looking for is symmetric and time reversible, it obvi-

Ouir first task is to find a sufficiently general Lagrang@n ously belongs to the CMF family, and since this solution
such that Eqs(10) and (11) yield the same trajectory. Once extremizes Eq(3) in the family of all orbits, it obviously

we are trying to avoid delay equations, it is desirable that theloes so restricted to the CMF family. A symmetric and time-

8S,=— 5G, (11)
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reversible orbit seen in a Lorentz frame other than the CMRhis sameG is subtracted from actio8,, the integral iden-
has the property that the future of electron 1 is the past ofities allow us to expres& as
electron 2 and vice versa. In the following we restrict the
analysis of the different-mass case to the CMF. For a general 1
covariant derivation of the equal-mass case, see Appendix Bg= f [qﬁ(g) + V() (L1t L)+ a(d) \/ZJF B(&) \/Z—z dé,

In the following we prove four integral identities for the b 2
orbits of the CMF family, which are later used to construct 17
the bilocal ghost Lagrangian. The action of the time-reversal
operation on orbits of the CMF family can be shown to bewhich is also in the local form for actio8,, with ¢ being
the following map:{; ,——§12,612~ — {12, Ta—rp and it the time parameter and the coordinates bejagand ¢,.
is worth noticing that time-reversal maps typeparametri-  Notice that the dot ovef; , in Eq. (17) indicates the deriva-
zation onto typeb and vice versa. In this work we ignore tive with respect tof (the time parameter of cag®). One
questiOHS of convergence and define all integrals forma”)toukj’ in princip'e' add more genera' parametrization_
from —o to o, an ambiguity inherited from the Wheeler- jnvariant terms tdG: for example, terms involving the inte-
Feynman theory and discussed in Rgff6]. The simplest  gration elementdé,d¢,)¥4(dé,dZ,) 4 or any highly com-
type of integral identity we shall use, valid for an arbitrary posite term, and the inversion to the Hamiltonian formalism

function ¢(x) of the real variable, is would involve several branches. Lagrangids) is the most
general ghost Lagrangian whose associated Hamiltonian in-
f ¢(é’)d§=f S(&)de. (13  volves quadratic rational functions of the momenta, and
a b should suffice if the orbit has only two monotonic branches,

. ) ~_ corresponding to the two elements of the Galois group of a
The IOWer |ndeX Of the |ntegra| denOteS the paramet”zauorquadratic equation_ The need for On'y four functions be-
type, and the above identity is trivial, as with either typer  comes also clearer later on, when we find that there are four
type b, the parameter runs from o to « ({ for typeaand  determining equations involving these four arbitrary func-
¢ for type b). It is also interesting to look at Eq13) as a  tjons. We notice also thap is defined up to a constant in
consequence of the coordinate transformation induced by th@qs. (16) and (17), which is also true ofV, as adding a
time-reversal symmetry of the CMF family & —¢). Inthe  constant toV simply adds a total time derivative 6 (a
same way, we can prove in the CMF the following integralgauge transformationThere is also no gain in generality if
identity, involving an arbitrary functioW (x) of the real vari- one defines a general linear term likgZ,+V,Z, in Eq.

able: (17), as this is also a trivial transformation of the case we
used.
Vv ﬁJr % de= | v %4_% dé. In the following we guide the reader to a division of the
(0 { (é) 3
a d¢  d¢f b d¢ = d¢ phase space into two disjoint regions, as our constructive

(14 method defines one Hamiltonian for each separate region as

The combination 4¢,d¢,+dé,dZ;) is the time-reversible @0 implicit function of phase space: The conditior 0 di-
Lorentz-invariant area element that appeared naturally ifides the phase space of a twice-monotonic orbit into two
Egs. (6) and (7). Last, the same time-reversal actiofy f ~ Separate regions according to whether0 or r <0 (in Ap-
— —&19,61—— {15 on the CMF family produces the fol- pendix B we show that this splitting is actually a covariant

lowing identities for arbitrary functiongy(¢) and g(¢) of  splitting for the equal-mass cas@he change fronf tor is
the real variable: one to one in each of the two regions of a twice-monotonic

orbit e[ —o,—|{]] and {e[—]|Z.|,*], as can be seen
from Fig. 1, and this naturally splits all integrals into two.
1/2__ 1/2
L“dﬂ(o(dfldgl) - Jb“d’t(g)(dfldgl) o (19 Eor example, the left integral of identit{i3) splits as fol-
lows:

Lﬂd,t@)(dgzdgz)”Z: fbﬁd,t(gxdgzdzz)l’z- ~lzd »
[ otoae= | “ograder [ araae as
The above identities suggest that we use a ghost Lagrangian : - ~lad

G of type
The above integral identity involves two arbitrary functions,
1 . : : and the subscript (as in turn indicates that functionp, is
G= L[d’(g)“L EV(O(§1+§2)+“(§) \/§_1+ B \/f_z}dg. defined in the region of phase space where the trajectory of
(16  Pparticle 1 includes a turning poirtsee Fig. 1, while sub-
scriptd (as in direct indicates thaipy is defined in the re-
Notice that the dot ovef; , in Eq. (16) indicates the deriva- gion of phase space where the trajectory of particle 1 is
tive with respect tQ (the time parameter of casg. ThisG  without a turning poinfsee Fig. 1 The same integral can be
is in the local form when added ®,, where{ plays the role  expressed for typ® applying the time-reversal change of
of the time parameter and the coordinates &reé,. When  variable{— — ¢ to the right side of Eq(18), which maps ,
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to r, and maps the critical poinf=—|¢.| of the { param- 1 M2
etrization to the critical point=|{.| of the & parametriza- Hb:T 1 1o 2
tion
’ — _V+ JE—
(pl 2 |41—z2|)
1<l *® 2
d =J ry)d +j rp)dé. (19 M
J,peae= [ “ocrades [ orode. a9 . b oy (3

1 e’
P22
These two portions are indicated in Fig. 1 for both casad 1o=2

caseb. 'F‘ the foIIov(\j/ing we split all ri]rjt(ra]grals_ %f. the ghohst We have omitted the subscripts but it should be kept in mind
Lagrangiand16) and (17) into two, which we indicate With o each of the above Hamiltonians is defined separately in

subscriptd andd in the same way as Egs18) and(19). Th_e each region of the phase space, a separation that will be
usefulness of the above splitting of the phase space is thalqf,1 when we come to the symmetry considerations. No-

one can express all functions in the ghost Lagrangian ag.. that the HamiltoniarH. depends onlv orr.= — 2
functions of the light-cone distand®) in each region, such —£,), which implies thatP. = p1p+ D, is a )éons'?ant ozf(rgnlo-
) a

that the Lagrangian becomes independent of the timelike Pion. For typeb parametrization, Hamiltoniabl, depends
rameter and allows the existence of a conserved erergy nly onry=2(Z1—¢,), implying ';he constanP,=p;+p,
2 ) .

Our next task is to solve each separate problem for ea _ :
. i =p;+
separate Lagrangidgand for each region of the phase space vgfi: agf)elsiﬁrﬁgmﬁtlonEﬁsugg:fsi;z dab;anonlcal change of
After inclusion of the ghost Lagrangian, the probleis, a

= 6G in the CMF family implies the Euler-Lagrange equa- X=1(&+&), P=p;+p, (24)
tions forL,=S,—G, ’ '

LLd=— f
. expressp; and p, of Eq. (22) in terms of the constan®
X(&1+ &)+ ¢tvd(ra)}d§’ (20 =P, and the relative momentup and substitution into the
condition H,=E, yields a quadratic equation fgy, with
solutions

) x=3(&—&), pP=p1— P2

- - e 1
t,d t,d
MiaVéi+ M3z, \/§2+(_| 6 & + §Vt,d(ra)) For typeb we use the analogous transformation wittre-
placed by¢ in the above formulas. One can use E2{4) to

whereM{8=m, + @ 4(r) andM5S=m,+ B, 4(r,) and the
Lagrangian can be uniquely inverted in each branch to pro-
duce a Hamiltonian, because of the monotonic property. The IOa:(

problem §S,= — 5G is described by ,=S,+G, Eat @)
2\ 2 AZ_QZ
. : e 1 i\/ Pt — 2yt u)
Lm:‘f{Mgg@”"%g@%la—gzl_EVt'd“b)) S TR )
(25

X(Z1+ZZ)_¢t,d(rb)}d§1 (21)

where Q,=;(M7,+M3,) and A,=;(M3,~M%,) andr,
=|x|. The separation for caseis analogous.

with MYd=m; — e 4(rp) andMb8=m,— B, 4(rp). We have So far we have shown that any common solution of
introduced eight érbitrary ghost functiorisq & Vi@ Hamiltonians(22) and (23) is also a solution of the 'orlgllnal
and 3, 4, four for each separate region of phase space, angdvance-delay problem of Eqél) and (2), for arbitrarily

we notice that these ghost functions enter with a plus sign i@Ven potentialsp q,Viq, a4, and B 4. It turns out that,
casea and with a minus sign in cade The Hamiltonian in  €Ven if we guessed the four potentlals_ correctly, Ham!lto—
each case is given by nians (22) and (23) would have only a single trajectory in

common for each given set of potentiglkis becomes clear
5 in the numerical work of Sec. VThis obstacle can be over-
H _—_1 M1a come with the Hamiltonian formalism if we generalize the
a~ e? ) potentials of Eqs(22) and(23) to implicit functions of the

1
P1+§V+ m energyE,=H, in casea and ofE,=H, in caseb. For ex-
ample, the potentialp is generalized togp= ¢(r,,E,) in
Mga casea and to¢= ¢(r,,Ep) in caseb (an analogous gener-

+ &2 ) —(ra), (22)  alization goes forV, a, and B). This generalized Hamil-

( + lv+ - tonian is still a function of phase space, becalstself is a
P2
2 61— & function of phase space, even though it is now only implic-
itly defined by Eqs(22) and(23). In this generalization, for
and each given orbit, of energ¥,, we still define the ghost

026219-5



E. B. HOLLANDER AND J. DE LUCA PHYSICAL REVIEW E67, 026219 (2003

Lagrangians with Eq920) and(21) usingfixed formpoten-  canonical transformation is defined such that the new mo-
tials: ¢=o(r,E,), V=V(r,E;), a=«a(r,E;), and B  mentum associated with the old variatieis the same old
=pB(r,Ey;). By construction, these generalized ghostconstantP =dS/9X and the other new momentum is the
Lagrangians have only a single orbit in common with theenergyE (with this last definition we exploit the fact thitis
generalized Hamiltonians, but it is essential that such provialready one argument of the potentjald/e chooseS in the
sional Lagrangians exist, such that we can prove that thenanner of Hamilton-Jacobi such that the new Hamiltonian
Hamiltonian equations associated to E@2) and(23) lead  vanishesK=H+3S/9{=0. As the Hamiltonian is zero, the
to Eqg. (1), which is accomplished by use of EfL2) with  new coordinates are defined simply by two constaGtand
fixed form potentials. After that we can dispose of theCy:

Lagrangians. On the Hamiltonian side, if we are changing

the potentials withE, the Hamiltonian equations of motion Xo=3dS/9dP =X+ W/ P, (29
derived from Eqs(22) and (23) pick an extra term propor-
tional to the derivative of the Hamiltonian with respect&o Co=—3dS/dE={—IWIJE.

(due to the implicit dependenceNe must therefore supple- ) ) )
ment a condition that this derivative vanishes along the orbif Ne above equations for tyedefine andX as functions of

in each case, which in casereads the variabler ,=|x|, and provide the complete solution of the
Hamiltonian motion. For further use, it is interesting to take
dHa(p,P,r,Ey) the differentials of Eq(29) relative tox,
— & @5
a

dX=—(9°W/3xdP)dx= — (dp/IP)dXx, (30)
and in casé reads
d{=(dWIdxJE)dx=(dpl/ JE)dX,
&Hb(p,P,r iEb)
(9—Eb:0' (27)  where we have usep=JW/dx (definition of the Hamilton-
Jacobi transformatigrand exchanged the partial derivatives.

In Eq. (26), the derivativesH,/JE,=0 should hold on the The explicit form of the differential for the trajectory is ob-
energy shellH,=E,, and in Eq. (27), the derivative tained using Eq(4) to relate particle coordinates dand{
dH,/9EL=0 should hold on the energy sheH,=E,. and using(30) to related X andd{ to dx. For typea param-
Elimination of the relative momentum, from H,=E yields  etrization the explicit solution is
Eq. (25), and substitution of Eq25) into Eqg. (26) yields a

partial differential equatioPDE) involving the four poten- 1 _ }(%_ 9Pa

tials. An analogous PDE results for EQ7) in caseb such dtia 2(d§a+dxa+dxa) 2\ 9P JE 1)dra,
that Eqgs.(26) and (27) define two partial differential equa- (31
tions involving the four arbitrary potentials in each region

(variables of the partial differential equations areP, and 1 _1[dpa  dpa

E). Rigorously, the generalization to implicitly defined dtZa—E(d§a+an—dxa)— 21 9P a_E+1 dra,

Hamiltonians proceeds only if the time-reversal operation
also map<, into E, . For that we notice thap enters with 1 1

a plus sign irtH, [Eq. (22)] and with a minus sign it [Eq. dxlazi(dga_dxa_dxa):§< -5~ 7
(23)], and the required symmetry can be accomplished by

adding an energy dependent constan$tdNe conclude this 1 1(op, dp
paragraph stressing that the generalized ghost Lagrangiansdx,,==(d{,—dX,+dx,)= __(_a ey 1) dr,,
were only a provisional artifaen routeto the eventual deri- 2 2\ 0P JE

vation of the Hamiltonian$22) and (23) from a variational
argument with use of symmetry. It should be clear that afte
we generalize Eq$22) and(23) to implicit dependence and
postulate Eqs(26) and(27), we can no longer go back to the 1 1(9 P
simple provisional ghost Lagrangians, and our constructive  qt, = (dg&,+dX,+dx,)= _(ﬂ_ 7Po
approach isessentiallyleft with an implicitly defined bi- 2 2\ 0 P
Hamiltonian system. (32
In the following we show that even with Hamiltoni&n?2)
defined in the implicit form we can write out the motion dt =l(d§ +dX,—dxy) = }(%_ %_1)(“
explicitly: This explicit solution is accomplished in the man- R R AW TR b
ner of Hamilton-Jacobi, by use of a canonical transformation

here we have also uselk,= —dr,. Analogously for type
(dx,=dr,) we obtain the explicit solution

+1)drb,

with a generating functioi® given b 1 1 d d
? ’ ’ g dxlbzi(_d§b+dxb+dxb):§<1_%_%> b
S=PX+W(x,P,E)—E(, (28
where the functioW(x,P,E) is defined by integration from :E _ _ __ 1/dpp P
the conditionp=dW/ax , with p given by Eq.(25). This dop=7(~déptdXy=dxy)= = 5| Z5r+ Ze 1 ]drp.
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particle 2 we should have$) (r)=—wv3s ,(r) for r
e[ry,°]. These two symmetry conditions, when expressed
in terms of 9p/dP and dp/JE using Egs.(31) and (32),
imply the four conditions

ap5h _Ipha
JP P’

(33

d ,d
ap;,b _ aptb,a
JE JE °

(34)

Conditions(33) and(34) represent two conditions for region
t and two conditions for regiod, each involving the corre-
sponding set of four potentials. For example, in regicon-
dition (33) is a simple algebraic equation because the poten-
tials do not depend orP explicitly (a possible physical
choice on the CMFE while condition(34) is a partial differ-
ential equation. We have completed the determining equa-
FIG. 2. Particle trajectories in the CMF far,=m; in the (x,t)  tions for the potentials, which, for example, in regibiis
plane, arbitrary units witle=1 ande’=mc’. Indicated is the mini-  composed of Eqg26) and(27) together with the sector of
mum distance , and the velocity of particle 1 in each branch cor- Egs.(33) and(34). At this point we notice another reason to
responding to the same distance rg=r;>r,. Eventu{, is the  include only four ghost potentials, as we found four deter-
time-reversed point of event, and, because of tha’rg:rﬁ_:r. A mining equations to be satisfié&qgs. (26), (27), (33), and
special symmetry of the equal-mass case: evgpis obtained bY  (34)]. The solution to these determining partial differential
parglcle exchange and time reversal frarfy,, which impliesrz —  aquations should determine the potentials in the CMF. This
=rp=r. All branches of the trajectory of particle 1 are indicated, g tion is elaborate and still involves arbitrary initial func-
and omitted for particle 2. Notice that we indicated the spatial d's'tions ofr, which must be determined numerically, which we
tance in the light-cone, which ig2 times the geometric distance in discuss élsewhel[d9]. In this work we calculate tf;e Hamil-
the (x.t) plane. tonian orbits directly with an independent numerical method.
Finally we notice the following time-reversal-and-
exchange symmetry relating regidrof casea to regiont of
caseb of the equal-mass case: As the direction of time in the
CMF is arbitrary and the particles are identical, the Lagrang-

We recall that Eqs(31) and(32) give the explicit solution in
terms ofp(r,E,P) as given by Eq(25).

Ill. SYMMETRY CONDITIONS FOR THE EQUAL-MASS ian for thed branch of casa must be equal to the Lagrang-
CASE ian for thet branch of casd with particles exchanged and
. . . vice versa, which implies
In this section we discuss only the equal-mass case, ancl
for that we sem;=m,=m=1 and allow only the charge to a=—Bq, PBi=—ay, (35)
be arbitrary, from which the generah and c case can be
recovered by simply replacing? by (e2/mc?). We hence- bi=—dg, Vi=—Vy.

forth sete=1 as well, which can be accomplished by a res-

caling of distances accompanied by a rescaling of time tg\n immediate consequence of E@5) is thatE.= Eﬁ and
keepc=1. In the following we derive general symmetry E{=E| as well asP'=P{ and P=P},. Becausep andV
relations involving the eight arbitrary functions are arbitrarily defined up to gauge constants, ang asdV

@ d.,Brd,Vid, andey q. Formula(25) for p, is the solution  enter with a plus sign in caseand with a minus sign in case

of a quadratic equation and defines two different functions,, we can also chooge}, = E{ =E andP'= P}, =P, such that

Pa by taking the plus and minus signs of the square root. It isne can use a common value for all the energies and a com-
easy to show that at the branch point the square root vannon value for all momenta, throughout the four combina-

ishes, so that a single branch of the square root describegns of region and case. We henceforth indicate energies
each of thet andd physical regions of phase space as indi-simply by E and momenta b.

cated in Fig. 1, henceforth indicated hﬁg and pg (on pap

we use superscripts to indicate branch type, to avoid over-,, EQUATION OF MATCHING FOR THE EQUAL-MASS
loaded notation, but with the ghost functions we keep using CASE

subscripts We have assumed that the orbit is time reversible

in the CMF and, to be consistent with that, time reversal In this section we introduce a simpler description in terms
must map each branch of the typetrajectory of particle 1  of two simple functionss(r,E) andF(r,E) (that are imme-
onto a branch of its typb trajectory, with the corresponding diately accessible numericallyFor example, thel sector of
velocities transforming likev Sy ,(r)=—v3i,(r) for r  Egs.(33) and(34) is studied by definingipy/ P, dp3/JE,
ery,»], as illustrated in Fig. 2. In an analogous way, for apﬁ/&P, and&pg/aE in terms ofs(r,E) andF(r,E) as

026219-7



E. B. HOLLANDER AND J. DE LUCA

dpg  apy  costis(r,E)]

aP 9P sinHs(r,E)]’ (36)
opy dpy  F(r,E) .
JE  JE  sinis(r,E)]’ (37)
For brancht, the consequences of definitiof@6) and (37)
and the symmetry relations of E5) are (i) that brancht
involves the same functioR(r,E) of branchd and (ii) that
brancht involves the functions(r,E) of branchd with a
change of sign. The general picture is thas(r,E) and
F(r,E) describe both casea and caseb, exchanging
branches in the same case replasésE) by —s(r,E),

PHYSICAL REVIEW E67, 026219 (2003

a rearrangement of Ed40). It is important to stress that
differently from the symmetry conditions, in this condition
r, andry are not equal, but rather for every pas, (r,) we
should be able to find a pais{,r,) such that Eq(41) is
satisfied. Figure 2 illustrates yet another symmetry special
for the equal-mass case: while particle 1 has a velocity angle
®(r,) (eventvl, in Fig. 2), particle 2 has a velocity angle
of ®4(r,) the same velocity particle 1 had in the past at the
first time thatr,=r [this symmetry reads‘za(r)=v‘1’a(r)].
Notice that there are two points along the orbit where the
advanced distance assumes a given value, one inbiteanch
where the velocity angle of particle 1 #,(r,) and one in
thed branch with velocity anglé4(r,), as illustrated in Fig.

2. With the understanding that these two branches must be

while exchanging case for the same branch leaves fU”Ctiorﬁroduced with opposite signs for the functisfr), Eq. (40)
s(r,E) andF(r,E) unchanged. In the following we drop the implies that ’

dependence oR of the functions for brevity.

Now we must impose that the same orbit is a solution of

both Eqs(22) and(23), which demands that th&portion of
the a orbit of particle 1 should coincide with pieceof thet
branch of particle 1 in cade (see Fig. 1L Notice that this is

exp(®q)exp(®y)=F(r,), (42

which in turn shows thaE(r) is determined by past data
only, namely the functionb4(r,). Another consequence of

not the one-to-one branch correspondence of the symmetilyg. (42) is that F(»)=1, as dy(x)=—P(«), the

considerations of Sec. Ill, and we stress the woiete be-

asymptotic boundary condition on the CMF. Once the orbit is

cause the branches are changed at different points, as can @escribed by two differentials, there is another condition for
seen from Fig. 1. We shall henceforth drop the subscripthe orbits to be parallel at all times, which is most easily
notation, and simply writs, ands,, meaning the plus or the expressed by equating the relativistic proper time of particle
minus branch of the function(r), wherever it applies. We 1 in the two foliations:

can use Eqgs(31), (32) and(36), (37) to express the differ-

entials of the particle-1 coordinates with typefoliation in »  EXP(Sa) o expisy) 2
terms ofr, ands,= *s(r,): (d7y) ~sint(s,) F(ra)(dra) ~sint(s,) F(rp)(drp)”.
. (43
dtya+ dxla:—sinl’(sa) F(ra)dra, (38 From the above we can derive differential equations for the
motion ofr, andry:
exp(s,) .
dtla Xma:—m la, %__ exq_sa/2)5|nr(sa) (44)
a - )
dry VF(ra)
and with typeb,
dr, exp(—sy/2)sinh(sy)
exp(s d- = .
dt1b+dxlb:%drb, (39) dTl F(rb)
Notice that we have used opposite signs for the evolution of
1 r, andry, the only sensible choice. Equatiofd) describes
dtlb_dxlb:mlz(rb)drb- a decrease of, andr, at large distances i§,>0 ands,

<0 (ingoing asymptoticsand an increase af, andr, at
At this point it is convenient to introduce still another func- large distances whes, <0 ands,>0 (outgoing asymptot-
tion: the velocity function of particle 1, which must be the icS). While asymptoticallys, and s, must have opposite
same in the corresponding branches of each case. We defifi@ns, they do not change sign at the same point and, in
it in case a by v1.(Ss,r,)=tanh@®) and in caseb by Particular, in the turning region of particle 1 they have the
v1p(Sp ,Tp) =tanh), which yields same sign, as illustrated in Fig. 1. We can glso elimirsgte
ands, in favor of ® from Eq. (44), resulting in

— _ -1
exp2d)=exp —s,)F(r)=exp(sp)F~*(rp). (40 dar. X 30)
The first condition of matching for the trajectory of particle 1 dr,~ 2|PP ) F2(r,) | (45
as described by the two foliations, requires that the velocities
be the samey 1,(S,,ra) =v1p(Sp.rp), resulting in dr, 1 exp —3d)
d_ = E exp(tb) - 2
exp(s,)exp(s,) =F(r)F(ry), (41) 1 Fa(rp)
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To close the dynamical system of matching we need an equa- exp(s) dé; (1+ a)?

tion for the variabled; which is provided by the Wheeler- F) Cdz 1 &2 (49)
Feynman equation of motiofi). To obtain a local equation, 4 pi+=V+ —)

we write Eq.(1) using a combination of typa and typeb 2 2r

foliations in the following way: whenever we need the ad-

_ 2
vanced position of particle 2, we write it using typefolia- exp—S) - %: (1+5) — (50)
tion (as particle 2 is naturally in the future light conahile F(r) d¢ al oot £V+e—
the retarded position of particle 2 is simply written with P2 2 2r

typeb foliation (where particle 2 is naturally in the past light

con@. The usefulness of the variable is discovered when We now take the most physically sensible square root of Egs.
Eq. (1) is written in terms of® and the proper time of par- (49) and(50), and substitute into Eq22), yielding

ticle 1, which yields simplyrecall that we are using=1)

Ea+ﬁbd:L[(l‘l'ad)quS/z)_(1+Bd)qu_5/2)]-
dd 1 [exp2®) exp—2®) 2\F
— == + . (46) (51
dri 2| r2F%(ry)  r2F%(ry)

In the same way, for cade we obtain after a choice of sign
for the square root
Equationg45) and(46) constitute the complete ordinary dif-
ferential equationODE) to describe the matching for the -1
orbit of particle 1. By now we have turned E€l) upside Ep— da=——=[(1—ag)exp(si2) = (1— Bg)exp(—s/2)].
down and used all the symmetries, and the resulting Egs. 2\F
(45) and(46) are much simpler to solve than Ed,). Rigor- (52)
8“3|y zpeakling we n(:v(\; htave_ aéﬂzlzf)iy-Tohrjly (?]quc'li(tjiobrl,:@ As discussed below E35), we henceforth seEl=ES =E
epends only on past data via . This should be con- d_ od_ : - . .
trasted with Eq.(1), a neutral-delay-advance equation with ?nd zbb_ P%—d.P. Aé"géalg qu?élg)n 'T‘"Ig!"'”% and Bq is
infinite lags. To solve Eq945) and (46) one needs to pos- ound by adding £qs>1 an » Yielding

tulate an arbitrary positive functiof-(r) with a given exn(s/2)— B. ext( —s/2)=2EJF 53
asymptotic formF(«)=1, and solve the resulting ODE. For tq EXP(SI2)~ g expl ) VF. 53
self-consistency, the ghost functidf(r) must be chosen another linear equation involving: and 8 can be obtained
such that the orbit of particle 2 is the same even function agy syubstituting Eq(51) into Eq.(47), Eq. (52) into Eq. (48),

that of particle 1, the definition of CMF. This functional and add|ng the resumng Eq@_?) and (48)' obtaining
problem is solved numerically in the following section.

Last we illustrate how to express the potentials of the e?
CMF in terms of the numerically accessible functia(s, E) 2( P+ T)
andF(r,E), along the simplest type of solution to E¢26), aq eXp(—s/2)— By exp(s/2)= — , (54
(27), (36), and (37). As in the CMF, the potentials depend \/—

only onE, Eq. (36) is algebraic and can be solved simply in

both case and casé as and we notice that Eq$53) and (54) constitute two linear

equations fora and 8. At the shortest light-cone distance

) ro, which happens &(r,) =0, the determinant of the linear

e system vanishes and poses the following solvability condi-
PatV+ T tion involving E and P:
[2(1+ a)(1+ B)coshs— (1+ a)?—(1+ B)?] e?
= , P+ J—
4(Eat o) Mo
E=- TR (55)
(47) (o)
For r>r, one hass(r)#0 and the linear systert63) and
( ez) (54) can be solved fory and B4 yielding
P,—V+ —
r - 2 ;
[2(1—a’)(l—ﬂ)COShS—(1—(1)2—(1—,3)2] EF(r)exps/2)+| P+ r exp(—s/2)
= . == =, (56
4(Ep—¢) “d JE(r)sinh(s) 0
(49 .
e2
EF(r)exp(—s/Z)+(P+— exp(s/2)
For casea the equations of motion fof; and &, derived By=- r /
from Egs.(22) and(26) are VF(r)sinh(s)
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In the CMF, the constar® is a function ofE, such that the
potentials depend only anandE, but the detailed analytical
form is not trivial at this point. It is also easy to finbl; and
Vyd,

_sinr(s/Z)

d’d_Ta
V4= Fsinh(s/2).

It can be checked that thebranch solution can be obtained
from Egs.(56) and (57) by settings— —s , which is sym-
metry (35) for equal-mass particles in the CMF.

We warn the reader that this simplest type of solution to
Egs. (26), (27), (33), and (34) does not correspond to the
low-energy orbits studied in the following section, and it was
included only to illustrate how the potentials can be deter-
mined bys(r,E) andF(r,E). A complete study of all pos-

sible solutions is elaborate and will be published elsewhere, G- 3. Matching the trajectory of particle 1 for a gendfifr):
Particle 2 starts from the past in cds@and, unles$-(r) is chosen

precisely, its future does not coincide with the trajectory of particle
V. NUMERICAL INTEGRATION: THE STEEPEST- 2 of casea. Arbitrary units withc=1 ande2: mC2

DESCENT METHOD

In Sec. IV we saw that describing the same particle 1 irdition F(<)=1 guarantees the asymptotic velocity of par-
both foliations results in Eqg45) and (46), involving the t|clg 2 to be the same in bot.h fol|at|_ons, so if we adjust the
single unknown ghost functioR(r). The above discussion orbits to overlap in the turning region, they become close
suggests the following simple self-consistent method to ob€verywhere. - _ .
tain the symmetric solution of 1D-WF2B in the equal-mass ©Our numerical method produces two trajectories for par-
case in the CMF: We start by postulating the functional formticle 2 from each set ok,,, by direct numerical integration
of F(r), which must go to 1 at large distances, as notecd®! theé main equationg45) and (46) accompanied by the
below Eq.(42). For the following numerical work we use up driven — equations  for  the trajectoriedxz,/dry),
to 18 arbitrary coefficients to approximakr) by a trun-  (dtza/dra), (dxzp/dry), and @dty,/dry) as determined by

(57)

cated power series, Egs.(31) and(32). We calculate the trajectories numerically
by using a 9/8 embedded Runge-Kutta pair. In general, two
n=18 different trajectories are obtained for particle 2, as illustrated
F(ry=1— 2 _: (58) in Fig. 3, and we calculate numerically the average squared
n=1 r

deviation of the two trajectories over a grid of positions

which has the desired asymptotic form. After we assume 1N
given values for thek,, the main equation$45) and (46) A(k) = \/_ D [toa(Xai) — top(Xai) ]2 (59)
yield a simple initial value ODE problem. The integration N =1

can be carried out froms the turning point, whete=0, ®

=0, andr,=r,=r>r, (the given functional form of(r) After that we implement a steepest-descent search in the
andr . determine all the subsequent dynamidsis integra-  18-dimensional parameter space governed by the quenching
tion produces a time-reversible orbit for particle 1. It can beequationdk,/ds= — dA/k,, until it finds a minimum value
seen by inspection of Eq&45) and (46) that exchanging;  for the squared deviation of E@59) (see Ref[20] for an
and— 71, and® and—® simply exchanges, andr,, such  analogous numerical quenching procedure
thatr,(—7)=r,(7), a consequence of the symmetry im-  In Fig. 4 we put the converged trajectory of particle 1
posed. When we start particle 1 at the turning point0,  superposed to the reflected trajectory of particle 2, for ve-
particle 2 is described in typa parametrization at the ad- locities v/c=0.46, v/c=0.54, andv/c=0.71. Notice that
vanced point X,,,t5,) =(—r.,r¢c), While with typeb pa- the trajectories coincide perfectly, indicating that the quench-
rametrization particle 2 is at the retarded positic,(tsa) ing search satisfied all the symmetry relations and thus found
=(—r¢,—r¢). As illustrated in Fig. 3, for a generic choice a consistent solution. As the solution is self-consistent, we
of F(r) the future of typeb trajectory of particle 2 will not cannot set the asymptotic velocity directly, and we determine
match the typea trajectory of the same particle 2, which a final low velocity by using an initial condition witin.
starts ahead of case and the scheme produces two different>1, while a large asymptotic velocity is achieved by using
orbits for particle 2, which is absurd. It is necessary to adjust.~1 (one classical electronic radjudVe start the numeri-
the functionF(r) precisely to obtain a single trajectory for cal work at low velocities, by setting a large value rqf,
particle 2, and it is nice to observe that the asymptotic conwhich results in a small asymptotic velocity. After that, we
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FIG. 4. Numerically determined trajectories in the CMF for ~ FIG- 5. Numerically determined trajector;es in the CMF for
my=m, in the (x,t) plane; units withc=1 ande?=mc. Three ~M=Mzin thg (x,t) plane; units witc=1 ande?=md. TheT orbit
different symmetric trajectories found by the steepest-descerfff Particle 2 is reflected and superposed onto that of particle 1 for a
method; the orbit of particle 2 is reflected and superposed onto th4lighly refativistic case ob/c=0.8 . Notice the slight mismatch of
of particle 1 to show the agreement/c=0.46,r,=4.7; vlc the two orbits, due to failure of convergence of the series.
=0.54, r,=3.7; andv/c=0.71,r.=2.97. ) )

abovev/c=0.71, maybe we are even loosing the twice-
d monotonic property(according to Appendix A this could

solution as seed to the quenching method, which converg&""ppen at any poipt abov;e{c:o.SS). Therg mjght also be.
much faster, as there must be a solution in the neighborhoo other trajectory in the neighborhood, which interferes with
of the seed7 the convergence, and last, at high energies(&8). becomes

In Table | we list the final velocities/c as a function of  ©° singular at thg C(_)Ilision. Further numer!cal.studies are
the initial conditionr .. From the numerically converged tra- needed to determme_n‘ some spemal bifurcation is happ(_enlng
jectories we calculate the minimum distangegand Table | to the ork_nt ab_ove;/c—_O.?l, which must b_e perform_ed W't.h
showsr ,/r .. We observe that some coefficieltsconverge a regulan;ed integration method. In this hlgh-velocny region
to a value below the numerical precision of 16 such that thg funcUongI problem posgd_ qﬁ(r) m.'ght _npt have a
only the firstN coefficients are significant to the numerical unique solution, and for relaﬂwsﬂ_c velocities it is likely that

it does not. The symmetric solution was actually proved to

precision. This number increases with the asymptotic veloc: . .
ity, as can be seen from Table | be unique only up to a small velocif{t2], and we managed

In Fig. 5 we plot the trajectory af/c=0.80 , which took to go much above the low limit set by Driver in R¢L2]. In

12 h of numerical quenching to converge and still one carfig' 6 we plotF(r) versus (,/r) for the asymp_totic veloci-
observe a slight mismatch of the orbits in the turning region I€s 0./020'46’ U/CZO'.54’ andv/c:O.SO. 'Not|ce thgt the
indicating the slowness of the convergence process. For th?}mctlonal form ofF(_r_) is approximately a Imle.ar f%’”C“O” of
case, the numerical 19th coefficient is still important, indi- r_O/r) at low velocities, but at larger velocities it becomes
cating that our basis is failing to converge to the .'solution.hlghly convoluted.

This failure suggests that something physical is happenin%tﬁsra?efséqu&ts?ea:é(i(fg)nﬁgmog g;geég%pgzt;;%rgri::’ra\ive

(and possibly differentfunctionsF,(r,) and Fy(r,), each
defined by an independent truncated power series like

decrease the value of and give the formerly determine

TABLE |. Numerically calculated asymptotic velocitias'c,
minimal radiir,/r., and numbeN of significant terms of thé& (r)
series as a function of the critical initial distanceat ®=0. Units

of energy are set bg=1 ande’=mdc. i ab

Fap(n)=kg"= 2, —-. (60)
vic re ro/re N et
0.11 60.00 0.9959 5 Notice that the saturation value is not anymafe’=1 like
0.21 22.00 0.9881 6 in Eq. (58), but rather a generic quenchable value in each
0.30 10.00 0.9693 7 case. The integration procedure was started wjthr, at
0.40 6.00 0.9413 9 ® =0 for particle 1. We found that the quenching method
0.51 4.00 0.8865 13 converged to function& 4(r,) andF,(r,) that were gener-
0.60 3.27 0.8213 16 ally different but were always related by the scaling dis-
0.71 2.96 0.7085 17 cussed in Appendix Bsee Eq.(B4) and text below it. Ac-
0.80 255 0.7199 18 cording to the discussion of Appendix B this is the case when

the orbit is symmetric in another Lorentz frame. This above-
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1.0

always a possible solution, but the symmetry of the physics
in this outbound CMF suggests that it is the only solution for
low energies, as the solution has to correspond to the Cou-
lombian solution, which has this propertthis would actu-

ally be a nontrivial generalization of the work of Driver and
Hoag in Refs[12,13)). With the above in mind, the Hamil-
tonian we derive here is already the general order-reduced
Hamiltonian for low energies. Some few numerical experi-
ments have suggested that the conjecture is correct at low
energies. Even the high-energy solutions found in [RES]
exhibit the property that the future of one particle is the past
of the other, and it looks like the numerical method in Ref.
[15] simply picked a Lorentz frame slightly off the CMF, but
that requires further investigation.

The idea to remove the field degrees of freedom goes
back to Dirad 7] and later Wheeler and Feynman planned to
guantize WF2B as a means to avoid the divergencies of
QED, as in the action-at-a-distance theory the infinite num-

FIG. 6. Numerically determined functior&(r), rescaled as a ber of field degr_ees of freedom is absent. History says that
function of ro/r; both quantities are dimensionless. Notice that atth€ famous seminar that never came from Whedlee Ref.
low velocitiesF(r) is well approximated by the first two terms of [21], p. 97 was due to difficulties in converting the Fokker
the seriesF(r)~1—k,/r , but at larger velocitie§ (r) becomes ~Lagrangian3) to the Hamiltonian form. This task is still not
highly convoluted. fully done and in this work we took a step in that direction

for the one-dimensional case at low energies. Notice that the
defined search would be capable of finding any existing orbitmplicit dependence of the Hamiltonian operator is actually
with the twice-monotonic property and the fact that it alwaysconvenient for an eigenvalue equation, and one could discuss
converged to Lorentz-transformed symmetric orbits is in-& canonical quantization procedure based on either(Zy.
dicative that there are no other types of low-energy solutionsQr (23), using the numerically determined potentials. Of

At this point it is interesting to appreciate the big detourcourse Wheeler and Feynman were mainly interested in the
taken by our numerical method to solve Ed), which  attractive case, of greater relevance for atomic physics and
should be compared to the most straightforward way to solvépecially for the Lamb shift calculation. The attractive prob-
a neutral-delay differential equation like E¢l), namely, lem is being published elsewhel®9]. In this same Chapter
postulating an initial function and continuing the solution by 5, p. 97 of Ref[21], Feynman says that “I didn't solve it
use of the differential equation. The straightforward methocgither—a quantum theory of half-advanced half-retarded
necessarily leads to runaways because one is never capalpletentials—and | worked on it for yesmr . . .” This is still an
of guessing the unique nonrunaway initial function, and everputstanding problem today and the difficulties in casting
if one does guess the nonrunaway condition, numericalelativistic Lagrangian interactions into theHamiltonian
roundoff plagues the integration and one still gets runaway#orm are well explained in Ref§22,23. The only studies we
after some short time. Our numerical method is superior irknow of dealing with the time-symmetric problem involve
this respect precisely because it is already placed in the nofpower expansions. We are aware of another attempt at a
runaway manifold, and the quenching implemented to solvédamiltonian description of 1D-WF2B that ends up with an
the functional problem fof(r) is numerically stable, as it infinite-dimensional Hamiltoniafh24], such that further or-

0.0

does not involve extrapolation. der reduction is needed to select nonrunaway orbits.
Our description might seem to violate the no-interaction
VI. CONCLUSIONS AND DISCUSSION theorem[1,2], but there are two places where we avoidiit:

the no-interaction theorem is an obstacle to covariant Hamil-

In this paper we discussed the solution and Hamiltoniartonian description of two interacting particles only in fully
description of the time-symmetric two-body problem of thethree-dimensional motion, we are restricted to one-
action-at-a-distance electrodynamics with repulsive interacdimensional motion;(ii) the evolution parameter in our
tion. Our method is closed and does not involve expansiongidamiltonians is not time but rathérfor casea or ¢ for case
only the hypothesis that the orbit is twice monotonic wasb and, therefore, the no-interaction theorem does not apply.
used. We conjecture that our solution is already the generah principle, because time is not the evolution parameter,
solution at low energies, which can be argued in the follow-even in three dimensions the no-interaction theorem would
ing way: For a generic solution, possibly unsymmetrical, onenot be an obstacle to an analogous procedure, and that is an
can always find a Lorentz frame where the asymptotic outopen problem.
bound velocities of the two particles are oppositee out- As regards the applied mathematics literature of delay, the
bound CMB. Now if asymptotic data determine a unique theory of delayed functional equatiof8,29 is a difficult
trajectory for low energies, that trajectory is our symmetricand poorly investigated subject but it turns out that there are
solution in this CMF. Of course the symmetric solution is already a few results worth noticing: In a paper of 1974 by
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Kaplan and Yorkd25], it was noticed that for some special ACKNOWLEDGMENTS
types of delay equations, solutions can be found by searching

the periodic orbits of an associatedrdinary differential Grant No. 99/08316-8 and J.D.L. acknowledges CNPQ, Bra-
equation. This was further generalized in 1928] and it "\ve thank R. Napolitano for a careful reading of the
was shown that for a large class of delay equations, the a%hanuscript.

sociated ODE turned out to beHamiltonian ODE, quite a

curious result{26] brought up by applied mathematicians

with no relation to either quantum mechanics or Wheeler- APPENDIX A: PROOF OF THE TWICE-MONOTONIC
Feynman electrodynamics. Another set of studies of applied PROPERTY

mathematics focuses on the similarities of delay equations to |, this section we show that in the Coulombian limit of a

either ODE’s or extended systerf7]: if the delay is small low-energy orbit, the solution of Eq¢l) and (2) has only

and bounded, the behavior should be reminiscent of that %vo branches, one defined by>0 and another defined b
ODE'’s, as determined by the dimension of the attractor in ' y

several systems with small delays, a generic class that coﬁ—<o' I?ecql:;e of 'gn;g—ntavgrsal ;yn&metri/, theatgeoreng is the
tains the bound states of the attractive 1D-WF2B, apart fronya € ToT Elther, Lindicated byq in Egs.(1) and(2)] or by

the fact that our system is conservative. In the limit where b lindicated byr in Egs. (1) and (2)]. It suffices to prove

the delays are very large, delay equations are found to bdbat there is only one point whetgvanishes, wittg defined
have like extended systems, with large dimensional attrad? Ed- (2). A special version of this proof was given in Ref.
tors, which is the generic class of the repulsive case of 1D[12] along symmeiric orbits of the equal-mass case. The

WF2B, where the lags are unbounded, and also of th@roof is trivial and can be done for a generic orbit of the
unbou;’ld states of the attractive case. ' arbitrary-mass repulsive two-body system in the CMF: We

As we mentioned in the Introduction. the action-at-a-Start from the definition of the light-cone condition for a

distance electrodynamics is capable of describing the Wholgenerlc CMF orbit,
of classical electrodynamics as a limiting case, and even bet-
ter, a limiting case without the complications of mass renor-
malization, as demonstrated by Wheeler and Feynfi3an
This was actually what led Wheeler and Feynman to the
action-at-a-distance electrodynamics in the first place, but itvherex,(t) represents the position of particle 1, assumed on
doing that they formulated a very compleonservative the right, andx,(t) represents the position of particle 2,
physical theory(the conserved energy associated with thedSsumed on the left, and we have setl . Notice that Eq.
Fokker Lagrangian is discussed, for example, in Ref]). It~ (2) is a special case of E¢AL) for symmetric orbits of the

is important to stress that the converse of the above stat@dual-mass caspx,(t)=—xy(t)]. The key observation is
ment is not true at all: the compleonservativedynamics of ~ that because the interaction is always repulsive, the velocity
the action-at-a-distance theory is not reducible to a limiting?1(t) Of particle 1 is a monotonicallincreasingfunction of
case of Maxwell's electrodynami¢which is always a dissi- time (particle 1 is repelled to the rightwhile the velocity
pative theory because of the radiatioRelativistic action-at-  v2(t) of particle 2 is a monotonicallflecreasingunction of
a-distance shares the conservative character with Newtonidtine (particle 2 is repelled to the leftlf we take the deriva-
gravitation, and in the presence of a universe of particles, ative of Eq.(Al) with respect ta and isolateq, we obtain

atom described by the action-at-a-distance theory has the

possibility to behave in a way analogous to the solar system

in the Ne_wtonian sky: distant solar masses being just small . v —va(t+Q)
perturbations, as opposed to the description by Maxwell, =m
where ithasto radiate. It appears to us that the analysis of 2
the complex conservative dynamics of WF2B is bound to
reveal interesting physical insights. As we have seen witdor low energy we have the bounfis,(t+q)|<v,()<1

this special case study, the physical nonrunaway conditioAnd |v(t)|<v;(*)<1, and therefore the denominator of
performs the magical reduction from the infinite-dimensionalgq. (A2) is always positive. In the CMF, the value of
dynamical system posed by the delay equation to a finiteehanges sign from the inbound asymptotic region to the out-
dimensional one, and the large body of existing understandsound asymptotic region, with values in the interval

ing on qualitative behavior of finite-dimensional vector fields
should be applicablg28]. Some results already published for
systems of e_ltomic physiqs within th(_a Damin approximation, vi(R) +vo(0)) . [vy(0)Fva(x)
a low-velocity Hamiltonian approximation to action-at-a- - I P
distance, have already revealed interesting N&0s31. Ex- va(*)
isting numerical methods for the relativistic case are still

short reachind32] and cannot reproduce the massive nu- To complete the proof we need only to notice that the sum
merical search performed with the Darwin approximation inof two monotonically increasing function$v,(t) and
[31]. —v,(t+q)] is also monotonically increasing and, therefore,

E.B.H. acknowledges financial support through Fapesp

q=x1(t) =xx(t+0q), (A1)

(A2)

|

1+vy(»)
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can only vanish once. It should be noticed that,(t+q) is :
not necessarily a monotonically increasing functiort ébr

. ; i 160.0
high-velocity orbits, as

80.0

dv,(t+q) - dup(t+0q) (Ad) e,

gt - girg

o . ) -40.0 -30.0 300 x
which is the product of & g times a negative numbérecall

thatv,(t) is a monotonically decreasing function of its argu- 8,
ment and therefore:-v,(t) is a monotonically increasing
function]. It can be seen that E§A4) guarantees that,(t
+q) is an increasing function of if (1 +é1) is positive,
which is the case for a low-velocity orbit. A simple estimate
for the first velocity where the twice-monotonic property can

fail in the equal-mass case is given by settigh=1 in Eq.
(A3), which predictsy () =1/3.

-160.0

FIG. 7. A typical trajectory of the RSF in a generic Lorentz
frame for the equal-mass case in thet] plane; units withc=1
ande?=mc®. The only symmetry is that the future of particle 1 is

APPENDIX B: COVARIANT DEFINITION OF THE the past of particle 2.

EQUAL-MASS CASE

In this appendix we exhibit a covariant derivation of the apLe opdt
above Hamiltonization procedure, which we develop only aé =- aE’
for the equal-mass case and with the hypothesis that the orbit
is twice monotonidproved in Ref[12] for low energies and
in Appendix A for arbitrary mass in the CMFThe definition The above conditions imply that the orbit is defined by four
of a covariant family starts from the observation that thedifferent functions=s,(r), *sp,,Fa(r) andFy(r) [see defi-
Lorentz transformation of a symmetric orbit has the propertynitions (36) and (37)]. To verify that condition(B1) is rela-
that the future of particle 1 is the past of particle 2 and vicetivistically invariant, let us suppose that we tried to describe
versa. We define the relativistic symmetric family of orbits, the orbit from another Lorentz frame, with boost parameter
henceforth called RSF, as the family of orbits with the prop-W- If the orbit is twicgmonotonic, it can be described in case
erty thatif x,(t;)+xX,(t,)=0, then it follows thatt;+t, a with a Lagrangiar_, of the same type as EO0), and a
=0. Itis easy to verify that RSF is a Lorentz invariant fam- Hamiltonian of type (22), and the new coordinates
ily of orbits and also that any Lorentz transformation of ax,, t,.,x;,,t;, must be obtained by a simple Lorentz trans-
symmetric orbit belongs to RSKbut in principle these formation with boost parametav. Imposing this condition
should not exhaust the RSF: there could be other types @fn the explicit solution(31), and noticing that the advanced
orbits). A generic orbit of the RSF is represented in Fig. 7,light-cone distance in the new frame is related to the old one

where we illustrate the time-reversal-and-exchange SYmMM&sy, gy = [(1+w)/(1—w)dr,, we obtain
try. The above definition implies that the future of particle 1 y dra=( i )dra,

is the past of particle 2 in the RSF. Inside the RSF, by use of
the time-reversal operatiodg;— —¢&,, {,——§&;, we can —
prove the same identitigd3), (14) and an equivalent form %:(1_"") % (B2)
of Eq. (15), relating particle 1 to particle fonly that in case JE  (1+w) JE’
b the role ofe and B is exchanged and these in turn lead to
the same type of general ghost Lagrangian to describe a Pry
twice-monotonic orbit. Pa _ 9Pa
The relativistic condition that the future of one particle is P gP’
the past of the other implies that the solution of WF2B inside

th% RSF ”{}USt have thed f0||0Wi219 branch correspondencesyhich, besides showing that E@1) is frame independent ,
vis(ra)=v5a(ra) andvys(rp)=v5s(ry) (see Fig. 7. These  also shows thas,(r) as defined by Eq(36) is a Lorentz
conditions can be seen with the help of E(l) and(32) to  scalar:

be equivalent to the four conditions

td at Sa(ra)=Sa(\ala), (B3)
ﬂpa’,b_ apa:b
P 9P’

(B1) and thatF 4(r,) [as defined by Eq37)] transforms like
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Fa(ra)=A2F(Nara), (B4) -\ MZ.(ra)

. e?

with A ;=+/(1—w)/(1+w). Caseb transforms in the same 2 |€,— &)
1 2

way with \p=1/\,. This last equation allows us to express

the Hamiltonian in any frame by use of the CMF form of M2.(r.) L
F(r) and a rescaling depending on the boost parameter, + zal a 5 —No(ry), (B5)
which can be determined by asymptotic data. — +EV+ €

Last we show that the action of a Lorentz transformation P2 2 |€l_§2|

on Hamiltonian(22) is a canonical transformation: It is easy

to verify with the help of Eq(4) that a Lorentz transforma- where ¢(ro)=(1M)d(ro), V(ra)=AV(ra), Mia(r_a)

tion simply rescales the coordinately and £, to & =M2,(r,), and M%a(r_a):Mga(ra)- Notice that Hamil-
=(1\) ¢, and ;= (1/A) &, with A=y (1—-w)/(1+w). To  tonjanH, picked a multiplicative factor ok and if we also
complete the change with a canonical tran_sformatlon, On'f)erform a change to the natural evolution paramgtemg
must scale the momenta with the inverse fagi@F=Ap; and  of the new Lorentz frame, it compensates exactly for that

sz)\pz. By this canonical transformation the transformedfactor, going back to the forni22), the same form for all
Hamiltonian is Lorentz frames.
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