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Two-degree-of-freedom Hamiltonian for the time-symmetric two-body
problem of the relativistic action-at-a-distance electrodynamics

Efrain Buksman Hollander and Jayme De Luca*
Universidade Federal de Sa˜o Carlos, Departamento de Fı´sica, Rodovia Washington Luis, km 235, Caixa Postal 676, Sa˜o Carlos,
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We find a two-degree-of-freedom Hamiltonian for the time-symmetric problem of straight line motion of
two electrons in direct relativistic interaction. This time-symmetric dynamical system appeared 100 years ago
and it was popularized in the 1940s by the work of Wheeler and Feynman in electrodynamics, which was left
incomplete due to the lack of a Hamiltonian description. The form of our Hamiltonian is such that the action
of a Lorentz transformation is explicitly described by a canonical transformation~with rescaling of the evolu-
tion parameter!. The method is closed and defines the Hamitonian in implicit form without power expansions.
We outline the method with an emphasis on the physics of this complex conservative dynamical system. The
Hamiltonian orbits are calculated numerically at low energies using a self-consistent steepest-descent method
~a stable numerical method that chooses only the nonrunaway solution!. The two-degree-of-freedom Hamil-
tonian suggests a simple prescription for the canonical quantization of the relativistic two-body problem.
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I. INTRODUCTION

The class of equivariant dynamical systems under
Poincare´ group has enormous relevance to physics and
to date, only the one-body relativistic motion, is fully unde
stood. Already with two bodies in relativistic motion, on
encounters the no-interaction theorem: a group theore
obstacle to the Hamiltonian description of relativistic tw
particle motion@1#. The no-interaction theorem can be ove
come by covariant constraint dynamics@2#, but one is left
with the few cases where the constraint scheme closes.
example, for an equivariant physical theory like the tim
symmetric electrodynamics@3#, a constraint description is
unknown. In this paper we present a reduction of the tim
symmetric two-body problem of the relativistic action-at-
distance electrodynamics to a two-degree-of-freedom Ha
tonian system along the nonrunaway solutions. The form
the Hamiltonian is such that a Lorentz transformation is
plicitly described by a canonical transformation with resc
ing of the evolution parameter. The Hamiltonian orbits a
calculated numerically by a numerically stable se
consistent method that uses steepest-descent quenchin
chooses only the nonrunaway orbits.

In 1903, Schwarzchild proposed a relativistic type of
teraction between charges that was time reversible prec
because it involved retarded and advanced interactions s
metrically @4#. The same model reappeared in the 1920s
the work of Tetrode and Fokker@5# and it finally became an
interesting physical theory after Wheeler and Feynm
showed that this direct-interaction theory can describe all
classical electromagnetic phenomena~i.e., the classical laws
of Coulomb, Faraday, Ampe`re, and Biot-Savart! @3,6#. An-
other accomplishment was that Wheeler and Feynm
showed in 1945 that in a certain limit where the electr

*Corresponding author. Email address: deluca@df.ufscar.br
1063-651X/2003/67~2!/026219~15!/$20.00 67 0262
e
t,

al

or
-

-

il-
f
-
-
e

and

-
ly

m-
n

n
e

n

practically interacts with a completely absorbing univer
the response of this universe to the electron’s field is equ
lent to the local Lorentz-Dirac self-interaction theory@7#
without the need of mass renormalization@3#. It is amusing
to understand that the classical radiative phenomena of M
well’s electrodynamics can be described as a limiting cas
this direct-interaction theory~complete absorption is adde
to the theory as a simple model to uncouple it from t
detailed neutral-delay dynamics of the other charges of
universe; for other limits see Ref.@8#!.

For the relativistic two-body system of the action-at-
distance electrodynamics, general solutions are not kno
and the only known special solution is the circular orbit f
the attractive two-body problem, first found in Ref.@9# and
later rediscovered in Ref.@10# ~see also Ref.@11#!. Our prob-
lem has already been studied: the symmetric motion of
electrons along a straight line@2x2(t)5x1(t)[x(t)#, which
has the following equation in the action-at-a-distance el
trodynamics:

m
d

dt S v

A12~v/c!2D 5
e2

2r 2 S 12v~ t2r !/c

11v~ t2r !/cD
1

e2

2q2 S 11v~ t1q!/c

12v~ t1q!/cD , ~1!

where v(t)[dx/dt is the velocity of the first electron, o
massm and chargee, and r and q are the time-dependen
delay and advance, respectively, which are implicitly defin
by the light-cone conditions

cr~ t !5x~ t !1x~ t2r !, ~2!

cq~ t !5x~ t !1x~ t1q!,

where c is the speed of light. In general, a neutral-del
equation such as Eqs.~1! and~2! requires an initial function
as the initial condition, but for the special case of Eqs.~1!
©2003 The American Physical Society19-1
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and ~2! it was proved in 1979 that for sufficiently low ene
gies, the Newtonian initial condition@x(0)5xo and v(0)
5vo] determines a unique symmetric solution that is g
bally defined~i.e., that does not run-away at some poin!
@12,13#. This surprising uniqueness theorem reducing the
tial condition from an arbitrary function to two simple re
numbers~initial position and velocity! already suggests tha
the physical phase space could be isomorphic to a t
degree-of-freedom Hamiltonian vector field, at least for lo
velocities~which is what we find here!. The first numerical
method to solve Eqs.~1! and~2! was given in Ref.@14# and
converged to solutions up tov/c50.94. Later, another
method@15# converged up tov/c50.99.

In the following, we present a method to find the nonru
away solution of Eqs.~1! and ~2! with a two-degree-of-
freedom Hamiltonian system. Our method is based on
physics; it starts from the Fokker action and transforms
neutral-advance-delay equation into two separateHamil-
tonianordinary differential equations for the same trajecto
in two different foliations. The Hamiltonians are defined
implicit form and can be solved explicitly in terms of th
arbitrary ghost functions by using the Hamilton-Jaco
theory. The condition that the two solutions describe
same trajectory poses a functional problem involving one
the ghost functions, with known asymptotic form, whic
must be solved self-consistently and is the basis of our
merical calculation of the Hamiltonian orbits. We outline t
method with an emphasis on the physics described by
complex conservative dynamical system. The paper is o
nized as follows. In Sec. II we describe the bi-Lagrang
method and solve explicitly for the motion resulting from t
Hamiltonians. In Sec. III we discuss some consequence
symmetry on the explicit solution of Sec. II to reduce t
number of arbitrary functions. In Sec. IV we determine
equation to match the dynamics of one of the particles in
two foliations, which turns out to involve only one of th
ghost functions. In Sec. V we use steepest-descent quenc
to find the self-consistent Hamiltonian orbits. In Appendix
we prove the twice-monotonic property for the arbitrar
mass case. Appendix B discusses an alternative cova
derivation of the equal-mass case, and we also show
that the action of a Lorentz transformation on the Ham
tonian is represented by a canonical transformation with
caling of the evolution parameter. In Sec. VI we give t
conclusions and discussion.

II. OUTLINE OF THE METHOD

Here we consider the isolated two-body system with
pulsive interaction, away from the other charges of the u
verse, a conservative time-reversible dynamical system
the action-at-a-distance electrodynamics. The equation
motion for two bodies in the action-at-a-distance electro
namics of Wheeler and Feynman@3#, henceforth called 1D-
WF2B, Eqs.~1! and ~2!, are derived formally@16# by ex-
tremizing the Schwarzschild-Tetrode-Fokker acti
functional
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SF52E m1ds12E m2ds2

2e2E E d~ uux12x2uu2!ẋ1• ẋ2ds1ds2 , ~3!

where xi(si) represents the four-position of particlei 51,2
parametrized by its arc lengthsi , double bars stand for the
four-vector modulusuux12x2uu2[(x12x2)•(x12x2), and
the dot indicates the Minkowski scalar product of fou
vectors with the metric tensorgmn (g0051,g115g225g335
21). The particles have massesm1 , m2, common chargee,
and in our units,c51 @17#. The formal conserved energ
associated with the Poincare´ invariance of the Fokker La-
grangian~3! is discussed in Refs.@3,17#, a nonlocal expres-
sion involving an integral over a portion of the trajector
which is not useful to the present work, even though we s
from the same Lagrangian~3!.

The starting point of our method is a transformation
new variables

j1[t12x1 , z1[t11x1 , ~4!

j2[t22x2 , z2[t21x2 .

As first noticed in Ref.@16#, this transformation splits the
action integral~3! into two separate local actions

SF5 1
2 ~Sa1Sb!, ~5!

with

Sa52E m1~dj1dz1!1/22E m2~dj2dz2!1/2

2e2E E d~z12z2!

uj12j2u ~dj1dz21dj2dz1!, ~6!

and

Sb52E m1~dj1dz1!1/22E m2~dj2dz2!1/2

2e2E E d~j12j2!

uz12z2u ~dj1dz21dj2dz1!. ~7!

It should be noticed that the double integral of Eq.~3! is
reduced, after integration of thed function, to a single inte-
gral over the parameter of particle 1, with particle 2 contr
uting only at the advanced and retarded positions, this be
precisely the reason for the nonlocality of the theory, as
lustrated in Eq.~1!. The usefulness of parametrization~4! is
that it naturally breaks the double integral of Eq.~3! into two
integrals, each involving a differentd function, and integra-
tion over eachd function couples particle 1 with particle 2 a
either the advanced position@the double integral included in
Sa of Eq. ~6!# or at the retarded position@the double integral
included inSb of Eq. ~7!#. For example, in actionSa of Eq.
~6!, the nonzero contribution of thed function occurs where
the parametersz1 andz2 take equal values,z15z25z, and
this z is the natural independent parameter of the local ac
9-2
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Sa ~this parametrization is often named the front form
dynamics in the literature and we henceforth call it typea
foliation!. For actionSb of Eq. ~7!, integration over thed
function produces a contribution to the integral only whe
the two parametersj1 andj2 are equal, andj15j25j is the
natural time parameter of actionSb ~henceforth called type-b
foliation!. To gain some insight into the two types of folia
tion, we notice that with typea, the particles are automat
cally in light-cone condition (x12x2)22(t12t2)250, par-
ticle 2 always being ahead of particle 1 in time after t
choicex12x2.0, with the light-cone distance being

r a52 1
2 ~j12j2!. ~8!

With type b parametrization, the particles are also in t
light-cone condition, with particle 2 behind in time and th
light-cone distance being

r b5 1
2 ~z12z2!. ~9!

The first heuristic guide for this work, as first noticed
Ref. @16#, is the simplicity of the Euler-Lagrange problem fo
partial action~6!: after expressing action~6! in terms of the
timelike parameterz, it is easily verified that the associate
Euler-Lagrange equation is a simple ordinary differen
equation ~not a delay equation anymore!. The Euler-
Lagrange problem for action~7! is analogous, withz re-
placed byj. To avoid confusion, we henceforth define tha
Lagrangian has alocal form when the associated Eule
Lagrange problem is defined by an ordinary different
equation. In the search for a local Lagrangian problem,
could try to extremize each of the partial action function
of Eqs. ~6! and ~7! and obtain a trajectory by solving th
Euler-Lagrange equation for eitherdSa50 or dSb50. Each
separate minimization, in general, yields a different traj
tory, which is the time-asymmetric problem studied in se
eral works@18#. The main idea of our method is thatif these
two trajectories turn out to be equal, this common traject
also extremizes the original action integral~3!, as dSF
5 1

2 dSa1 1
2 dSb501050. Simply formulated as above, th

problem turns out to be impossible; and it is possible
prove that the two separate solutions can never describe
same orbit. To overcome this difficulty we need to postul
a more general bi-Lagrangian problem by simultaneou
solving

dSa5dG ~10!

and

dSb52dG, ~11!

with G being a so far undetermined Lagrangian. A trajecto
that satisfies Eq.~10! and~11! will also extremize the Fokke
action ~3!, a simple consequence of Eqs.~5!, ~10!, and~11!:

dSF5 1
2 dSa1 1

2 dSb5 1
2 dG2 1

2 dG50. ~12!

Our first task is to find a sufficiently general LagrangianG
such that Eqs.~10! and ~11! yield the same trajectory. Onc
we are trying to avoid delay equations, it is desirable that
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Euler-Lagrange equations for Eqs.~10! and~11! be ordinary
differential equations, which is the heuristic guide for choo
ing the functionalG. A functional G that leaves the two
separate problems~10! and ~11! in local form is henceforth
called a bilocal ghost LagrangianG. Here we consider sym
metric and time-reversible solutions of Eq.~1! only, but for
the variational calculus that follows, it is necessary to stu
such an orbit immersed in a family of orbits, defined as f
lows: A time-reversible orbit naturally defines a preferr
frame, the Lorentz frame where the orbit is time-reversib
and we henceforth call it the center of mass frame~CMF!.
We consider in the CMF the family of all orbits such that t
trajectories of electrons 1 and 2 are both time reversible
not necessarily equal~nonsymmetric orbits! @x1(2t)
5x1(t)# and @x2(2t)5x2(t)#, and with the physical prop-
erty that both the advanced and retarded distances dec
monotonically to a point of minimum and then start increa
ing monotonically again, as illustrated in Fig. 1. We henc
forth call this family of orbits the CMF family. The fact tha
the solution of Eqs.~1! and~2! has this piecewise monotoni
property is a consequence of the velocity being a monoto
function of time, which was proved in Ref.@12# for suffi-
ciently low velocity orbits~in Appendix A we prove this
assertion for the arbitrary-mass case!. We henceforth refer to
a CMF orbit as a twice-monotonic orbit. Since the soluti
we are looking for is symmetric and time reversible, it obv
ously belongs to the CMF family, and since this soluti
extremizes Eq.~3! in the family of all orbits, it obviously
does so restricted to the CMF family. A symmetric and tim

FIG. 1. Particle trajectories in the CMF form1Þm2 in the (x,t)
plane, arbitrary units withc51 ande25mc2. Particle 1: casea
indicated in branches: 1at ~solid inner line on right! and 1ad

~hatched inner line on right!; caseb indicated in branches 1bd

~hatched outer line on right! and 1bt ~solid outer line on right!. For
clarity we indicate the typea and typeb orbits of particle 1 as
separate curves, but there is just one orbit for particle 1. Trajec
of particle 2 is represented by the solid line on left, branches are
indicated. The geometric distance in the (x,t) plane between two
points in the light-cone condition isA2r , with r being the spatial
distance, we have dropped theA2 factor and indicated simplyr.
9-3
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reversible orbit seen in a Lorentz frame other than the C
has the property that the future of electron 1 is the pas
electron 2 and vice versa. In the following we restrict t
analysis of the different-mass case to the CMF. For a gen
covariant derivation of the equal-mass case, see Append

In the following we prove four integral identities for th
orbits of the CMF family, which are later used to constru
the bilocal ghost Lagrangian. The action of the time-rever
operation on orbits of the CMF family can be shown to
the following map:z1,2→2j1,2,j1,2→2z1,2, r a→r b and it
is worth noticing that time-reversal maps typea parametri-
zation onto typeb and vice versa. In this work we ignor
questions of convergence and define all integrals form
from 2` to `, an ambiguity inherited from the Wheele
Feynman theory and discussed in Ref.@16#. The simplest
type of integral identity we shall use, valid for an arbitra
function f(x) of the real variable, is

E
a
f~z!dz5E

b
f~j!dj. ~13!

The lower index of the integral denotes the parametriza
type, and the above identity is trivial, as with either typea or
type b, the parameter runs from2` to ` (z for type a and
j for type b). It is also interesting to look at Eq.~13! as a
consequence of the coordinate transformation induced by
time-reversal symmetry of the CMF family (z→2j). In the
same way, we can prove in the CMF the following integ
identity, involving an arbitrary functionV(x) of the real vari-
able:

E
a
V~z!S dj1

dz
1

dj2

dz Ddz5E
b
V~j!S dz1

dj
1

dz2

dj Ddj.

~14!

The combination (dj1dz21dj2dz1) is the time-reversible
Lorentz-invariant area element that appeared naturally
Eqs. ~6! and ~7!. Last, the same time-reversal action (z1,2
→2j1,2,j1,2→2z1,2) on the CMF family produces the fol
lowing identities for arbitrary functionsa(z) and b(z) of
the real variable:

E
a
ad,t~z!~dj1dz1!1/25E

b
ad,t~j!~dj1dz1!1/2, ~15!

E
a
bd,t~z!~dj2dz2!1/25E

b
bd,t~j!~dj2dz2!1/2.

The above identities suggest that we use a ghost Lagran
G of type

G5E
a
Ff~z!1

1

2
V~z!~ j̇11 j̇2!1a~z!Aj̇11b~z!Aj̇2Gdz.

~16!

Notice that the dot overj1,2 in Eq. ~16! indicates the deriva-
tive with respect toz ~the time parameter of casea). This G
is in the local form when added toSa , wherez plays the role
of the time parameter and the coordinates arej1 , j2. When
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this sameG is subtracted from actionSb , the integral iden-
tities allow us to expressG as

G5E
b
Ff~j!1

1

2
V~j!~ ż11 ż2!1a~j!Aż11b~j!Aż2Gdj,

~17!

which is also in the local form for actionSb , with j being
the time parameter and the coordinates beingz1 and z2.
Notice that the dot overz1,2 in Eq. ~17! indicates the deriva-
tive with respect toj ~the time parameter of caseb). One
could, in principle, add more general parametrizatio
invariant terms toG: for example, terms involving the inte
gration element (dj1dz1)1/4(dj2dz2)1/4 or any highly com-
posite term, and the inversion to the Hamiltonian formalis
would involve several branches. Lagrangian~16! is the most
general ghost Lagrangian whose associated Hamiltonian
volves quadratic rational functions of the momenta, a
should suffice if the orbit has only two monotonic branch
corresponding to the two elements of the Galois group o
quadratic equation. The need for only four functions b
comes also clearer later on, when we find that there are
determining equations involving these four arbitrary fun
tions. We notice also thatf is defined up to a constant i
Eqs. ~16! and ~17!, which is also true ofV, as adding a
constant toV simply adds a total time derivative toG ~a
gauge transformation!. There is also no gain in generality
one defines a general linear term likeV1ż11V2ż2 in Eq.
~17!, as this is also a trivial transformation of the case
used.

In the following we guide the reader to a division of th
phase space into two disjoint regions, as our construc
method defines one Hamiltonian for each separate regio
an implicit function of phase space: The conditionṙ 50 di-
vides the phase space of a twice-monotonic orbit into t
separate regions according to whetherṙ .0 or ṙ ,0 ~in Ap-
pendix B we show that this splitting is actually a covaria
splitting for the equal-mass case!. The change fromz to r a is
one to one in each of the two regions of a twice-monoto
orbit zP@2`,2uzcu# and zP@2uzcu,`#, as can be seen
from Fig. 1, and this naturally splits all integrals into tw
For example, the left integral of identity~13! splits as fol-
lows:

E
a
f~z!dz5E

2`

2uzcu
fd~r a!dz1E

2uzcu

`

f t~r a!dz. ~18!

The above integral identity involves two arbitrary function
and the subscriptt ~as in turn! indicates that functionf t is
defined in the region of phase space where the trajector
particle 1 includes a turning point~see Fig. 1!, while sub-
script d ~as in direct! indicates thatfd is defined in the re-
gion of phase space where the trajectory of particle 1
without a turning point~see Fig. 1!. The same integral can b
expressed for typeb applying the time-reversal change o
variablez→2j to the right side of Eq.~18!, which mapsr a
9-4
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to r b and maps the critical pointz52uzcu of the z param-
etrization to the critical pointj5uzcu of the j parametriza-
tion,

E
b
f~j!dj5E

2`

uzcu
f t~r b!dj1E

2uzcu

`

fd~r b!dj. ~19!

These two portions are indicated in Fig. 1 for both casea and
caseb. In the following we split all integrals of the ghos
Lagrangians~16! and ~17! into two, which we indicate with
subscriptst andd in the same way as Eqs.~18! and~19!. The
usefulness of the above splitting of the phase space is
one can express all functions in the ghost Lagrangian
functions of the light-cone distance~8! in each region, such
that the Lagrangian becomes independent of the timelike
rameter and allows the existence of a conserved energyE.

Our next task is to solve each separate problem for e
separate Lagrangian~and for each region of the phase spac!.
After inclusion of the ghost Lagrangian, the problemdSa
5dG in the CMF family implies the Euler-Lagrange equ
tions for La5Sa2G,

La
t,d52E FM1a

t,dAj̇11M2a
t,dAj̇21S e2

uj12j2u
1

1

2
Vt,d~r a! D

3~ j̇11 j̇2!1f t,d~r a!Gdz, ~20!

whereM1a
t,d[m11a t,d(r a) andM2a

t,d[m21b t,d(r a) and the
Lagrangian can be uniquely inverted in each branch to p
duce a Hamiltonian, because of the monotonic property.
problemdSb52dG is described byLb5Sb1G,

Lb
t,d52E FM1b

t,dAż11M2b
t,dAż21S e2

uz12z2u
2

1

2
Vt,d~r b! D

3~ ż11 ż2!2f t,d~r b!Gdj, ~21!

with M1b
t,d[m12a t,d(r b) andM2b

t,d[m22b t,d(r b). We have
introduced eight arbitrary ghost functions:f t,d , Vt,d ,a t,d
andb t,d , four for each separate region of phase space,
we notice that these ghost functions enter with a plus sig
casea and with a minus sign in caseb. The Hamiltonian in
each case is given by

Ha5
21

4 H M1a
2

S p11
1

2
V1

e2

uj12j2u D
1

M2a
2

S p21
1

2
V1

e2

uj12j2u D J 2f~r a!, ~22!

and
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21

4 H M1b
2

S p12
1

2
V1

e2

uz12z2u D
1

M2b
2

S p22
1

2
V1

e2

uz12z2u D J 1f~r b!. ~23!

We have omitted the subscripts but it should be kept in m
that each of the above Hamiltonians is defined separatel
each region of the phase space, a separation that wil
useful when we come to the symmetry considerations. N
tice that the HamiltonianHa depends only onr a52 1

2 (j1
2j2), which implies thatPa5p11p2 is a constant of mo-
tion. For typeb parametrization, HamiltonianHb depends
only on r b5 1

2 (z12z2), implying the constantPb5p11p2.
The constantPa5p11p2 suggests a canonical change
variables for HamiltonianHa , defined by

X[ 1
2 ~j11j2!, P[p11p2 , ~24!

x[ 1
2 ~j12j2!, p5p12p2 .

For typeb we use the analogous transformation withj re-
placed byz in the above formulas. One can use Eq.~24! to
expressp1 and p2 of Eq. ~22! in terms of the constantP
5Pa and the relative momentump, and substitution into the
condition Ha5Ea yields a quadratic equation forp, with
solutions

pa5
Da

~Ea1f!

6AS Pa1
Qa

~Ea1f!
1V~r !1

e2

r a
D 2

1S Da
22Qa

2

~Ea1f!2D ,

~25!

where Qa[ 1
4 (M1a

2 1M2a
2 ) and Da[ 1

4 (M2a
2 2M1a

2 ) and r a

5uxu. The separation for caseb is analogous.
So far we have shown that any common solution

Hamiltonians~22! and ~23! is also a solution of the origina
advance-delay problem of Eqs.~1! and ~2!, for arbitrarily
given potentialsf t,d ,Vt,d ,a t,d , andb t,d . It turns out that,
even if we guessed the four potentials correctly, Hamil
nians ~22! and ~23! would have only a single trajectory in
common for each given set of potentials~this becomes clea
in the numerical work of Sec. V!. This obstacle can be over
come with the Hamiltonian formalism if we generalize th
potentials of Eqs.~22! and ~23! to implicit functions of the
energyEa5Ha in casea and ofEb5Hb in caseb. For ex-
ample, the potentialf is generalized tof5f(r a ,Ea) in
casea and tof5f(r b ,Eb) in caseb ~an analogous gener
alization goes forV, a, and b). This generalized Hamil-
tonian is still a function of phase space, becauseE itself is a
function of phase space, even though it is now only impl
itly defined by Eqs.~22! and~23!. In this generalization, for
each given orbit, of energyEo , we still define the ghost
9-5
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Lagrangians with Eqs.~20! and~21! usingfixed formpoten-
tials: f5f(r ,Eo), V5V(r ,Eo), a5a(r ,Eo), and b
5b(r ,Eo). By construction, these generalized gho
Lagrangians have only a single orbit in common with t
generalized Hamiltonians, but it is essential that such pro
sional Lagrangians exist, such that we can prove that
Hamiltonian equations associated to Eqs.~22! and ~23! lead
to Eq. ~1!, which is accomplished by use of Eq.~12! with
fixed form potentials. After that we can dispose of t
Lagrangians. On the Hamiltonian side, if we are chang
the potentials withE, the Hamiltonian equations of motio
derived from Eqs.~22! and ~23! pick an extra term propor
tional to the derivative of the Hamiltonian with respect toE,
~due to the implicit dependence!. We must therefore supple
ment a condition that this derivative vanishes along the o
in each case, which in casea reads

]Ha~p,P,r ,Ea!

]Ea
50 ~26!

and in caseb reads

]Hb~p,P,r ,Eb!

]Eb
50. ~27!

In Eq. ~26!, the derivative]Ha /]Ea50 should hold on the
energy shell Ha5Ea, and in Eq. ~27!, the derivative
]Hb /]Eb50 should hold on the energy shellHb5Eb .
Elimination of the relative momentumpa from Ha5E yields
Eq. ~25!, and substitution of Eq.~25! into Eq. ~26! yields a
partial differential equation~PDE! involving the four poten-
tials. An analogous PDE results for Eq.~27! in caseb such
that Eqs.~26! and ~27! define two partial differential equa
tions involving the four arbitrary potentials in each regi
~variables of the partial differential equations arer, P, and
E). Rigorously, the generalization to implicitly define
Hamiltonians proceeds only if the time-reversal operat
also mapsEa into Eb . For that we notice thatf enters with
a plus sign inHa @Eq. ~22!# and with a minus sign inHb @Eq.
~23!#, and the required symmetry can be accomplished
adding an energy dependent constant tof. We conclude this
paragraph stressing that the generalized ghost Lagrang
were only a provisional artifacten routeto the eventual deri-
vation of the Hamiltonians~22! and ~23! from a variational
argument with use of symmetry. It should be clear that a
we generalize Eqs.~22! and~23! to implicit dependence and
postulate Eqs.~26! and~27!, we can no longer go back to th
simple provisional ghost Lagrangians, and our construc
approach isessentiallyleft with an implicitly defined bi-
Hamiltonian system.

In the following we show that even with Hamiltonian~22!
defined in the implicit form we can write out the motio
explicitly: This explicit solution is accomplished in the ma
ner of Hamilton-Jacobi, by use of a canonical transformat
with a generating functionS given by

S5PX1W~x,P,E!2Ez, ~28!

where the functionW(x,P,E) is defined by integration from
the conditionp5]W/]x , with p given by Eq.~25!. This
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canonical transformation is defined such that the new m
mentum associated with the old variableX is the same old
constantP 5]S/]X and the other new momentum is th
energyE ~with this last definition we exploit the fact thatE is
already one argument of the potentials!. We chooseS in the
manner of Hamilton-Jacobi such that the new Hamilton
vanishes:K5H1]S/]z50. As the Hamiltonian is zero, the
new coordinates are defined simply by two constantsX0 and
C0:

X05]S/]P5X1]W/]P, ~29!

C052]S/]E5z2]W/]E.

The above equations for typea definez andX as functions of
the variabler a[uxu, and provide the complete solution of th
Hamiltonian motion. For further use, it is interesting to ta
the differentials of Eq.~29! relative tox,

dX52~]2W/]x]P!dx52~]p/]P!dx, ~30!

dz5~]W/]x]E!dx5~]p/]E!dx,

where we have usedp5]W/]x ~definition of the Hamilton-
Jacobi transformation! and exchanged the partial derivative
The explicit form of the differential for the trajectory is ob
tained using Eq.~4! to relate particle coordinates toX andz
and using~30! to relatedX anddz to dx. For typea param-
etrization the explicit solution is

dt1a5
1

2
~dza1dXa1dxa!5

1

2 S ]pa

]P
2

]pa

]E
21Ddra ,

~31!

dt2a5
1

2
~dza1dXa2dxa!5

1

2 S ]pa

]P
2

]pa

]E
11Ddra ,

dx1a5
1

2
~dza2dXa2dxa!5

1

2 S 12
]pa

]P
2

]pa

]E Ddra ,

dx2a5
1

2
~dza2dXa1dxa!52

1

2 S ]pa

]P
1

]pa

]E
11Ddra ,

where we have also useddxa52dra . Analogously for type
b (dxb5drb) we obtain the explicit solution

dt1b5
1

2
~djb1dXb1dxb!5

1

2 S ]pb

]E
2

]pb

]P
11Ddrb ,

~32!

dt2b5
1

2
~djb1dXb2dxb!5

1

2 S ]pb

]E
2

]pb

]P
21Ddrb ,

dx1b5
1

2
~2djb1dXb1dxb!5

1

2 S 12
]pb

]P
2

]pb

]E Ddrb ,

dx2b5
1

2
~2djb1dXb2dxb!52

1

2 S ]pb

]P
1

]pb

]E
11Ddrb .
9-6
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We recall that Eqs.~31! and~32! give the explicit solution in
terms ofp(r ,E,P) as given by Eq.~25!.

III. SYMMETRY CONDITIONS FOR THE EQUAL-MASS
CASE

In this section we discuss only the equal-mass case,
for that we setm15m25m51 and allow only the charge to
be arbitrary, from which the generalm and c case can be
recovered by simply replacinge2 by (e2/mc2). We hence-
forth sete51 as well, which can be accomplished by a re
caling of distances accompanied by a rescaling of time
keep c51. In the following we derive general symmetr
relations involving the eight arbitrary function
a t,d ,b t,d ,Vt,d , andf t,d . Formula~25! for pa is the solution
of a quadratic equation and defines two different functio
pa by taking the plus and minus signs of the square root.
easy to show that at the branch point the square root v
ishes, so that a single branch of the square root descr
each of thet andd physical regions of phase space as in
cated in Fig. 1, henceforth indicated bypa

t and pa
d ~on pa,b

we use superscripts to indicate branch type, to avoid o
loaded notation, but with the ghost functions we keep us
subscripts!. We have assumed that the orbit is time reversi
in the CMF and, to be consistent with that, time rever
must map each branch of the typea trajectory of particle 1
onto a branch of its typeb trajectory, with the correspondin
velocities transforming likev1a,b

d,t (r )52v1b,a
d,t (r ) for r

P@r o ,`#, as illustrated in Fig. 2. In an analogous way, f

FIG. 2. Particle trajectories in the CMF form15m2 in the (x,t)
plane, arbitrary units withc51 ande25mc2. Indicated is the mini-
mum distancer o and the velocity of particle 1 in each branch co
responding to the same distancer 5r a

d5r a
t .r o . Event v1a

d is the
time-reversed point of eventv1b

d and, because of that,r a
d5r b

d5r . A
special symmetry of the equal-mass case: eventv2a

t is obtained by
particle exchange and time reversal fromv1a

d , which implies r a
t

5r b
d5r . All branches of the trajectory of particle 1 are indicate

and omitted for particle 2. Notice that we indicated the spatial d
tance in the light-cone, which isA2 times the geometric distance i
the (x,t) plane.
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particle 2 we should havev2a,b
d,t (r )52v2b,a

d,t (r ) for r
P@r o ,`#. These two symmetry conditions, when express
in terms of ]p/]P and ]p/]E using Eqs.~31! and ~32!,
imply the four conditions

]pa,b
t,d

]P
5

]pb,a
t,d

]P
, ~33!

]pa,b
t,d

]E
5

]pb,a
t,d

]E
. ~34!

Conditions~33! and~34! represent two conditions for regio
t and two conditions for regiond, each involving the corre-
sponding set of four potentials. For example, in regiont con-
dition ~33! is a simple algebraic equation because the pot
tials do not depend onP explicitly ~a possible physica
choice on the CMF!, while condition~34! is a partial differ-
ential equation. We have completed the determining eq
tions for the potentials, which, for example, in regiont is
composed of Eqs.~26! and~27! together with thet sector of
Eqs.~33! and~34!. At this point we notice another reason
include only four ghost potentials, as we found four det
mining equations to be satisfied@Eqs. ~26!, ~27!, ~33!, and
~34!#. The solution to these determining partial different
equations should determine the potentials in the CMF. T
solution is elaborate and still involves arbitrary initial fun
tions of r, which must be determined numerically, which w
discuss elsewhere@19#. In this work we calculate the Hamil
tonian orbits directly with an independent numerical meth

Finally we notice the following time-reversal-and
exchange symmetry relating regiond of casea to regiont of
caseb of the equal-mass case: As the direction of time in
CMF is arbitrary and the particles are identical, the Lagra
ian for thed branch of casea must be equal to the Lagrang
ian for the t branch of caseb with particles exchanged an
vice versa, which implies

a t52bd , b t52ad , ~35!

f t52fd , Vt52Vd .

An immediate consequence of Eq.~35! is that Ea
t 5Eb

d and
Ea

d5Eb
t as well asPa

t 5Pb
d and Pa

d5Pb
t . Becausef and V

are arbitrarily defined up to gauge constants, and asf andV
enter with a plus sign in casea and with a minus sign in cas
b, we can also chooseEa

t 5Eb
t 5E andPa

t 5Pb
t 5P, such that

one can use a common value for all the energies and a c
mon value for all momenta, throughout the four combin
tions of region and case. We henceforth indicate energ
simply by E and momenta byP.

IV. EQUATION OF MATCHING FOR THE EQUAL-MASS
CASE

In this section we introduce a simpler description in ter
of two simple functionss(r ,E) andF(r ,E) ~that are imme-
diately accessible numerically!. For example, thed sector of
Eqs. ~33! and ~34! is studied by defining]pa

d/]P, ]pa
d/]E,

]pb
d/]P, and]pb

d/]E in terms ofs(r ,E) andF(r ,E) as

,
-

9-7
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]pa
d

]P
5

]pb
d

]P
[2

cosh@s~r ,E!#

sinh@s~r ,E!#
, ~36!

]pa
d

]E
5

]pb
d

]E
[

F~r ,E!

sinh@s~r ,E!#
. ~37!

For brancht, the consequences of definitions~36! and ~37!
and the symmetry relations of Eq.~35! are ~i! that brancht
involves the same functionF(r ,E) of branchd and ~ii ! that
branch t involves the functions(r ,E) of branchd with a
change of sign. The general picture is that6s(r ,E) and
F(r ,E) describe both casea and caseb, exchanging
branches in the same case replacess(r ,E) by 2s(r ,E),
while exchanging case for the same branch leaves funct
s(r ,E) andF(r ,E) unchanged. In the following we drop th
dependence onE of the functions for brevity.

Now we must impose that the same orbit is a solution
both Eqs.~22! and~23!, which demands that thed portion of
thea orbit of particle 1 should coincide with apieceof the t
branch of particle 1 in caseb ~see Fig. 1!. Notice that this is
not the one-to-one branch correspondence of the symm
considerations of Sec. III, and we stress the wordpiece, be-
cause the branches are changed at different points, as c
seen from Fig. 1. We shall henceforth drop the subsc
notation, and simply writesa andsb , meaning the plus or the
minus branch of the functions(r ), wherever it applies. We
can use Eqs.~31!, ~32! and ~36!, ~37! to express the differ-
entials of the particle-1 coordinates with typea foliation in
terms ofr a andsa56s(r a):

dt1a1dx1a5
21

sinh~sa!
F~r a!dra , ~38!

dt1a2dx1a52
exp~sa!

sinh~sa!
dra ,

and with typeb,

dt1b1dx1b5
exp~sb!

sinh~sb!
drb , ~39!

dt1b2dx1b5
1

sinh~sb!
F~r b!drb .

At this point it is convenient to introduce still another fun
tion: the velocity function of particle 1, which must be th
same in the corresponding branches of each case. We d
it in case a by v1a(sa ,r a)5tanh(F) and in caseb by
v1b(sb ,r b)[tanh(F), which yields

exp~2F![exp~2sa!F~r a!5exp~sb!F21~r b!. ~40!

The first condition of matching for the trajectory of particle
as described by the two foliations, requires that the veloci
be the same,v1a(sa ,r a)5v1b(sb ,r b), resulting in

exp~sa!exp~sb!5F~r a!F~r b!, ~41!
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a rearrangement of Eq.~40!. It is important to stress tha
differently from the symmetry conditions, in this conditio
r a andr b are not equal, but rather for every pair (sa ,r a) we
should be able to find a pair (sb ,r b) such that Eq.~41! is
satisfied. Figure 2 illustrates yet another symmetry spe
for the equal-mass case: while particle 1 has a velocity an
F t(r a) ~eventv1a

t in Fig. 2!, particle 2 has a velocity angle
of Fd(r a) the same velocity particle 1 had in the past at t
first time thatr a5r @this symmetry readsv2a

t (r )5v1a
d (r )].

Notice that there are two points along the orbit where
advanced distance assumes a given value, one in thet branch
where the velocity angle of particle 1 isF t(r a) and one in
thed branch with velocity angleFd(r a), as illustrated in Fig.
2. With the understanding that these two branches mus
produced with opposite signs for the functions(r ), Eq. ~40!
implies that

exp~Fd!exp~F t!5F~r a!, ~42!

which in turn shows thatF(r ) is determined by past dat
only, namely the functionFd(r a). Another consequence o
Eq. ~42! is that F(`)51, as Fd(`)52F t(`), the
asymptotic boundary condition on the CMF. Once the orbi
described by two differentials, there is another condition
the orbits to be parallel at all times, which is most eas
expressed by equating the relativistic proper time of part
1 in the two foliations:

~dt1!25
exp~sa!

sinh2~sa!
F~r a!~dra!25

exp~sb!

sinh2~sb!
F~r b!~drb!2.

~43!

From the above we can derive differential equations for
motion of r a and r b :

dra

dt1
52

exp~2sa/2!sinh~sa!

AF~r a!
, ~44!

drb

dt1
5

exp~2sb/2!sinh~sb!

AF~r b!
.

Notice that we have used opposite signs for the evolution
r a andr b , the only sensible choice. Equation~44! describes
a decrease ofr a and r b at large distances ifsa.0 andsb
,0 ~ingoing asymptotics! and an increase ofr a and r b at
large distances whensa,0 andsb.0 ~outgoing asymptot-
ics!. While asymptoticallysa and sb must have opposite
signs, they do not change sign at the same point and
particular, in the turning region of particle 1 they have t
same sign, as illustrated in Fig. 1. We can also eliminatesa
andsb in favor of F from Eq. ~44!, resulting in

dra

dt1
52

1

2 Fexp~2F!2
exp~3F!

F2~r a!
G , ~45!

drb

dt1
5

1

2 Fexp~F!2
exp~23F!

F2~r b!
G .
9-8
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To close the dynamical system of matching we need an e
tion for the variableF; which is provided by the Wheeler
Feynman equation of motion~1!. To obtain a local equation
we write Eq.~1! using a combination of typea and typeb
foliations in the following way: whenever we need the a
vanced position of particle 2, we write it using typea folia-
tion ~as particle 2 is naturally in the future light cone!, while
the retarded position of particle 2 is simply written wi
typeb foliation ~where particle 2 is naturally in the past ligh
cone!. The usefulness of the variableF is discovered when
Eq. ~1! is written in terms ofF and the proper time of par
ticle 1, which yields simply~recall that we are usinge51)

dF

dt1
5

1

2 H exp~2F!

r a
2F2~r a!

1
exp~22F!

r b
2F2~r b!

J . ~46!

Equations~45! and~46! constitute the complete ordinary di
ferential equation~ODE! to describe the matching for th
orbit of particle 1. By now we have turned Eq.~1! upside
down and used all the symmetries, and the resulting E
~45! and~46! are much simpler to solve than Eq.~1!. Rigor-
ously speaking we now have a delay-only equation, asF(r )
depends only on past data via Eq.~42!. This should be con-
trasted with Eq.~1!, a neutral-delay-advance equation wi
infinite lags. To solve Eqs.~45! and ~46! one needs to pos
tulate an arbitrary positive functionF(r ) with a given
asymptotic formF(`)51, and solve the resulting ODE. Fo
self-consistency, the ghost functionF(r ) must be chosen
such that the orbit of particle 2 is the same even function
that of particle 1, the definition of CMF. This functiona
problem is solved numerically in the following section.

Last we illustrate how to express the potentials of
CMF in terms of the numerically accessible functionss(r ,E)
andF(r ,E), along the simplest type of solution to Eqs.~26!,
~27!, ~36!, and ~37!. As in the CMF, the potentials depen
only on E, Eq. ~36! is algebraic and can be solved simply
both casea and caseb as

S Pa1V1
e2

r D
5

@2~11a!~11b!coshs2~11a!22~11b!2#

4~Ea1f!
,

~47!

S Pb2V1
e2

r D
5

@2~12a!~12b!coshs2~12a!22~12b!2#

4~Eb2f!
.

~48!

For casea the equations of motion forj1 and j2 derived
from Eqs.~22! and ~26! are
02621
a-
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s.

s

e

exp~s!

F~r !
5

dj1

dz
5

~11a!2

4S p11
1

2
V1

e2

2r D
2 , ~49!

exp~2s!

F~r !
5

dj2

dz
5

~11b!2

4S p21
1

2
V1

e2

2r D
2 . ~50!

We now take the most physically sensible square root of E
~49! and ~50!, and substitute into Eq.~22!, yielding

Ea1fd5
1

2AF
@~11ad!exp~s/2!2~11bd!exp~2s/2!#.

~51!

In the same way, for caseb, we obtain after a choice of sign
for the square root

Eb2fd5
21

2AF
@~12ad!exp~s/2!2~12bd!exp~2s/2!#.

~52!

As discussed below Eq.~35!, we henceforth setEb
d5Ea

d [E
and Pb

d5Pa
d[P. A linear equation involvingad and bd is

found by adding Eqs.~51! and ~52!, yielding

ad exp~s/2!2bd exp~2s/2!52EAF. ~53!

Another linear equation involvinga andb can be obtained
by substituting Eq.~51! into Eq.~47!, Eq. ~52! into Eq.~48!,
and adding the resulting Eqs.~47! and ~48!, obtaining

ad exp~2s/2!2bd exp~s/2!52

2S P1
e2

r D
AF

, ~54!

and we notice that Eqs.~53! and ~54! constitute two linear
equations fora and b. At the shortest light-cone distanc
r o , which happens ats(r o)50, the determinant of the linea
system vanishes and poses the following solvability con
tion involving E andP:

E52

S P1
e2

r o
D

F~r o!
. ~55!

For r .r o one hass(r )Þ0 and the linear system~53! and
~54! can be solved forad andbd yielding

ad5

FEF~r !exp~s/2!1S P1
e2

r Dexp~2s/2!G
AF~r !sinh~s!

, ~56!

bd5

FEF~r !exp~2s/2!1S P1
e2

r Dexp~s/2!G
AF~r !sinh~s!

.

9-9
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In the CMF, the constantP is a function ofE, such that the
potentials depend only onr andE, but the detailed analytica
form is not trivial at this point. It is also easy to findfd and
Vd ,

fd5
sinh~s/2!

AF
, ~57!

Vd5AFsinh~s/2!.

It can be checked that thet branch solution can be obtaine
from Eqs.~56! and ~57! by settings→2s , which is sym-
metry ~35! for equal-mass particles in the CMF.

We warn the reader that this simplest type of solution
Eqs. ~26!, ~27!, ~33!, and ~34! does not correspond to th
low-energy orbits studied in the following section, and it w
included only to illustrate how the potentials can be det
mined bys(r ,E) andF(r ,E). A complete study of all pos-
sible solutions is elaborate and will be published elsewh

V. NUMERICAL INTEGRATION: THE STEEPEST-
DESCENT METHOD

In Sec. IV we saw that describing the same particle 1
both foliations results in Eqs.~45! and ~46!, involving the
single unknown ghost functionF(r ). The above discussion
suggests the following simple self-consistent method to
tain the symmetric solution of 1D-WF2B in the equal-ma
case in the CMF: We start by postulating the functional fo
of F(r ), which must go to 1 at large distances, as no
below Eq.~42!. For the following numerical work we use u
to 18 arbitrary coefficients to approximateF(r ) by a trun-
cated power series,

F~r !512 (
n51

n518
kn

r n
, ~58!

which has the desired asymptotic form. After we assu
given values for thekn , the main equations~45! and ~46!
yield a simple initial value ODE problem. The integratio
can be carried out froms the turning point, wheret150, F
50, andr a5r b5r c.r o ~the given functional form ofF(r )
andr c determine all the subsequent dynamics!. This integra-
tion produces a time-reversible orbit for particle 1. It can
seen by inspection of Eqs.~45! and ~46! that exchangingt1
and2t1, andF and2F simply exchangesr a andr b , such
that r a(2t1)5r b(t1), a consequence of the symmetry im
posed. When we start particle 1 at the turning point,F50,
particle 2 is described in typea parametrization at the ad
vanced point (x2a ,t2a)5(2r c ,r c), while with type b pa-
rametrization particle 2 is at the retarded position (x2a ,t2a)
5(2r c ,2r c). As illustrated in Fig. 3, for a generic choic
of F(r ) the future of typeb trajectory of particle 2 will not
match the typea trajectory of the same particle 2, whic
starts ahead of caseb, and the scheme produces two differe
orbits for particle 2, which is absurd. It is necessary to ad
the functionF(r ) precisely to obtain a single trajectory fo
particle 2, and it is nice to observe that the asymptotic c
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dition F(`)51 guarantees the asymptotic velocity of pa
ticle 2 to be the same in both foliations, so if we adjust t
orbits to overlap in the turning region, they become clo
everywhere.

Our numerical method produces two trajectories for p
ticle 2 from each set ofkn , by direct numerical integration
of the main equations~45! and ~46! accompanied by the
driven equations for the trajectories:(dx2a /dra),
(dt2a /dra), (dx2b /drb), and (dt2b /drb) as determined by
Eqs.~31! and~32!. We calculate the trajectories numerical
by using a 9/8 embedded Runge-Kutta pair. In general,
different trajectories are obtained for particle 2, as illustra
in Fig. 3, and we calculate numerically the average squa
deviation of the two trajectories over a grid of positions

A~k!5A1

N (
i 51

N

@ t2a~x2i !2t2b~x2i !#
2. ~59!

After that we implement a steepest-descent search in
18-dimensional parameter space governed by the quenc
equationdkn /ds52]A/]kn until it finds a minimum value
for the squared deviation of Eq.~59! ~see Ref.@20# for an
analogous numerical quenching procedure!.

In Fig. 4 we put the converged trajectory of particle
superposed to the reflected trajectory of particle 2, for
locities v/c50.46, v/c50.54, andv/c50.71. Notice that
the trajectories coincide perfectly, indicating that the quen
ing search satisfied all the symmetry relations and thus fo
a consistent solution. As the solution is self-consistent,
cannot set the asymptotic velocity directly, and we determ
a final low velocity by using an initial condition withr c
@1, while a large asymptotic velocity is achieved by usi
r c'1 ~one classical electronic radius!. We start the numeri-
cal work at low velocities, by setting a large value ofr c ,
which results in a small asymptotic velocity. After that, w

FIG. 3. Matching the trajectory of particle 1 for a genericF(r ):
Particle 2 starts from the past in caseb and, unlessF(r ) is chosen
precisely, its future does not coincide with the trajectory of parti
2 of casea. Arbitrary units withc51 ande25mc2.
9-10
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decrease the value ofr c and give the formerly determine
solution as seed to the quenching method, which conve
much faster, as there must be a solution in the neighborh
of the seed.

In Table I we list the final velocitiesv/c as a function of
the initial conditionr c . From the numerically converged tra
jectories we calculate the minimum distancer o and Table I
showsr o /r c . We observe that some coefficientskn converge
to a value below the numerical precision of 10214 such that
only the firstN coefficients are significant to the numeric
precision. This number increases with the asymptotic ve
ity, as can be seen from Table I.

In Fig. 5 we plot the trajectory ofv/c50.80 , which took
12 h of numerical quenching to converge and still one c
observe a slight mismatch of the orbits in the turning regi
indicating the slowness of the convergence process. For
case, the numerical 19th coefficient is still important, in
cating that our basis is failing to converge to the solutio
This failure suggests that something physical is happen

FIG. 4. Numerically determined trajectories in the CMF f
m15m2 in the (x,t) plane; units withc51 ande25mc2. Three
different symmetric trajectories found by the steepest-des
method; the orbit of particle 2 is reflected and superposed onto
of particle 1 to show the agreement:v/c50.46, r c54.7; v/c
50.54, r c53.7; andv/c50.71, r c52.97.

TABLE I. Numerically calculated asymptotic velocitiesv/c,
minimal radii r o /r c , and numberN of significant terms of theF(r )
series as a function of the critical initial distancer c at F50. Units
of energy are set byc51 ande25mc2.

v/c rc r 0 /r c N

0.11 60.00 0.9959 5
0.21 22.00 0.9881 6
0.30 10.00 0.9693 7
0.40 6.00 0.9413 9
0.51 4.00 0.8865 13
0.60 3.27 0.8213 16
0.71 2.96 0.7085 17
0.80 2.55 0.7199 18
02621
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above v/c50.71, maybe we are even loosing the twic
monotonic property~according to Appendix A this could
happen at any point abovev/c50.33). There might also be
another trajectory in the neighborhood, which interferes w
the convergence, and last, at high energies Eq.~58! becomes
too singular at the collision. Further numerical studies
needed to determine if some special bifurcation is happen
to the orbit abovev/c50.71, which must be performed wit
a regularized integration method. In this high-velocity regi
the functional problem posed onF(r ) might not have a
unique solution, and for relativistic velocities it is likely tha
it does not. The symmetric solution was actually proved
be unique only up to a small velocity@12#, and we managed
to go much above the low limit set by Driver in Ref.@12#. In
Fig. 6 we plotF(r ) versus (r o /r ) for the asymptotic veloci-
ties v/c50.46, v/c50.54, andv/c50.80. Notice that the
functional form ofF(r ) is approximately a linear function o
(r o /r ) at low velocities, but at larger velocities it becom
highly convoluted.

As a test for the existence of other types of orbits,
integrated Eqs.~45! and ~46! using two completely genera
~and possibly different! functionsFa(r a) and Fb(r b), each
defined by an independent truncated power series like

Fa,b~r !5ko
a,b2 (

n51

n59 kn
a,b

r n
. ~60!

Notice that the saturation value is not anymoreko
a,b51 like

in Eq. ~58!, but rather a generic quenchable value in ea
case. The integration procedure was started withr aÞr b at
F50 for particle 1. We found that the quenching meth
converged to functionsFa(r a) and Fb(r b) that were gener-
ally different but were always related by the scaling d
cussed in Appendix B@see Eq.~B4! and text below it#. Ac-
cording to the discussion of Appendix B this is the case wh
the orbit is symmetric in another Lorentz frame. This abov

nt
at

FIG. 5. Numerically determined trajectories in the CMF f
m15m2 in the (x,t) plane; units withc51 ande25mc2. The orbit
of particle 2 is reflected and superposed onto that of particle 1 f
highly relativistic case ofv/c50.8 . Notice the slight mismatch o
the two orbits, due to failure of convergence of the series.
9-11
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defined search would be capable of finding any existing o
with the twice-monotonic property and the fact that it alwa
converged to Lorentz-transformed symmetric orbits is
dicative that there are no other types of low-energy solutio

At this point it is interesting to appreciate the big deto
taken by our numerical method to solve Eq.~1!, which
should be compared to the most straightforward way to so
a neutral-delay differential equation like Eq.~1!, namely,
postulating an initial function and continuing the solution
use of the differential equation. The straightforward meth
necessarily leads to runaways because one is never ca
of guessing the unique nonrunaway initial function, and ev
if one does guess the nonrunaway condition, numer
roundoff plagues the integration and one still gets runaw
after some short time. Our numerical method is superio
this respect precisely because it is already placed in the
runaway manifold, and the quenching implemented to so
the functional problem forF(r ) is numerically stable, as i
does not involve extrapolation.

VI. CONCLUSIONS AND DISCUSSION

In this paper we discussed the solution and Hamilton
description of the time-symmetric two-body problem of t
action-at-a-distance electrodynamics with repulsive inter
tion. Our method is closed and does not involve expansio
only the hypothesis that the orbit is twice monotonic w
used. We conjecture that our solution is already the gen
solution at low energies, which can be argued in the follo
ing way: For a generic solution, possibly unsymmetrical, o
can always find a Lorentz frame where the asymptotic o
bound velocities of the two particles are opposite~the out-
bound CMF!. Now if asymptotic data determine a uniqu
trajectory for low energies, that trajectory is our symmet
solution in this CMF. Of course the symmetric solution

FIG. 6. Numerically determined functionsF(r ), rescaled as a
function of r o /r ; both quantities are dimensionless. Notice that
low velocitiesF(r ) is well approximated by the first two terms o
the series,F(r );12k1 /r , but at larger velocitiesF(r ) becomes
highly convoluted.
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always a possible solution, but the symmetry of the phys
in this outbound CMF suggests that it is the only solution
low energies, as the solution has to correspond to the C
lombian solution, which has this property~this would actu-
ally be a nontrivial generalization of the work of Driver an
Hoag in Refs.@12,13#!. With the above in mind, the Hamil
tonian we derive here is already the general order-redu
Hamiltonian for low energies. Some few numerical expe
ments have suggested that the conjecture is correct at
energies. Even the high-energy solutions found in Ref.@15#
exhibit the property that the future of one particle is the p
of the other, and it looks like the numerical method in R
@15# simply picked a Lorentz frame slightly off the CMF, bu
that requires further investigation.

The idea to remove the field degrees of freedom g
back to Dirac@7# and later Wheeler and Feynman planned
quantize WF2B as a means to avoid the divergencies
QED, as in the action-at-a-distance theory the infinite nu
ber of field degrees of freedom is absent. History says
the famous seminar that never came from Wheeler~see Ref.
@21#, p. 97! was due to difficulties in converting the Fokke
Lagrangian~3! to the Hamiltonian form. This task is still no
fully done and in this work we took a step in that directio
for the one-dimensional case at low energies. Notice that
implicit dependence of the Hamiltonian operator is actua
convenient for an eigenvalue equation, and one could disc
a canonical quantization procedure based on either Eq.~22!
or ~23!, using the numerically determined potentials.
course Wheeler and Feynman were mainly interested in
attractive case, of greater relevance for atomic physics
specially for the Lamb shift calculation. The attractive pro
lem is being published elsewhere@19#. In this same Chapte
5, p. 97 of Ref.@21#, Feynman says that ‘‘I didn’t solve i
either—a quantum theory of half-advanced half-retard
potentials—and I worked on it for years . . . . ’’ This is still an
outstanding problem today and the difficulties in casti
relativistic Lagrangian interactions into theHamiltonian
form are well explained in Refs.@22,23#. The only studies we
know of dealing with the time-symmetric problem involv
power expansions. We are aware of another attempt
Hamiltonian description of 1D-WF2B that ends up with a
infinite-dimensional Hamiltonian@24#, such that further or-
der reduction is needed to select nonrunaway orbits.

Our description might seem to violate the no-interacti
theorem@1,2#, but there are two places where we avoid it:~i!
the no-interaction theorem is an obstacle to covariant Ham
tonian description of two interacting particles only in ful
three-dimensional motion, we are restricted to on
dimensional motion;~ii ! the evolution parameter in ou
Hamiltonians is not time but ratherz for casea or j for case
b and, therefore, the no-interaction theorem does not ap
In principle, because time is not the evolution parame
even in three dimensions the no-interaction theorem wo
not be an obstacle to an analogous procedure, and that
open problem.

As regards the applied mathematics literature of delay,
theory of delayed functional equations@28,29# is a difficult
and poorly investigated subject but it turns out that there
already a few results worth noticing: In a paper of 1974

t
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Kaplan and Yorke@25#, it was noticed that for some speci
types of delay equations, solutions can be found by searc
the periodic orbits of an associatedordinary differential
equation. This was further generalized in 1999@26# and it
was shown that for a large class of delay equations, the
sociated ODE turned out to be aHamiltonianODE, quite a
curious result@26# brought up by applied mathematician
with no relation to either quantum mechanics or Whee
Feynman electrodynamics. Another set of studies of app
mathematics focuses on the similarities of delay equation
either ODE’s or extended systems@27#: if the delay is small
and bounded, the behavior should be reminiscent of tha
ODE’s, as determined by the dimension of the attractor
several systems with small delays, a generic class that
tains the bound states of the attractive 1D-WF2B, apart fr
the fact that our system is conservative. In the limit whe
the delays are very large, delay equations are found to
have like extended systems, with large dimensional att
tors, which is the generic class of the repulsive case of
WF2B, where the lags are unbounded, and also of
unbound states of the attractive case.

As we mentioned in the Introduction, the action-at-
distance electrodynamics is capable of describing the wh
of classical electrodynamics as a limiting case, and even
ter, a limiting case without the complications of mass ren
malization, as demonstrated by Wheeler and Feynman@3#.
This was actually what led Wheeler and Feynman to
action-at-a-distance electrodynamics in the first place, bu
doing that they formulated a very complexconservative
physical theory~the conserved energy associated with
Fokker Lagrangian is discussed, for example, in Ref.@17#!. It
is important to stress that the converse of the above s
ment is not true at all: the complexconservativedynamics of
the action-at-a-distance theory is not reducible to a limit
case of Maxwell’s electrodynamics~which is always a dissi-
pative theory because of the radiation!. Relativistic action-at-
a-distance shares the conservative character with Newto
gravitation, and in the presence of a universe of particles
atom described by the action-at-a-distance theory has
possibility to behave in a way analogous to the solar sys
in the Newtonian sky: distant solar masses being just sm
perturbations, as opposed to the description by Maxw
where ithas to radiate. It appears to us that the analysis
the complex conservative dynamics of WF2B is bound
reveal interesting physical insights. As we have seen w
this special case study, the physical nonrunaway condi
performs the magical reduction from the infinite-dimensio
dynamical system posed by the delay equation to a fin
dimensional one, and the large body of existing understa
ing on qualitative behavior of finite-dimensional vector fiel
should be applicable@28#. Some results already published f
systems of atomic physics within the Darwin approximatio
a low-velocity Hamiltonian approximation to action-at-
distance, have already revealed interesting news@30,31#. Ex-
isting numerical methods for the relativistic case are s
short reaching@32# and cannot reproduce the massive n
merical search performed with the Darwin approximation
@31#.
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APPENDIX A: PROOF OF THE TWICE-MONOTONIC
PROPERTY

In this section we show that in the Coulombian limit of
low-energy orbit, the solution of Eqs.~1! and ~2! has only
two branches, one defined byṙ .0 and another defined b
ṙ ,0. Because of time-reversal symmetry, the theorem is
same for eitherr a @indicated byq in Eqs.~1! and ~2!# or by
r b @indicated byr in Eqs. ~1! and ~2!#. It suffices to prove
that there is only one point whereq̇ vanishes, withq defined
in Eq. ~2!. A special version of this proof was given in Re
@12# along symmetric orbits of the equal-mass case. T
proof is trivial and can be done for a generic orbit of t
arbitrary-mass repulsive two-body system in the CMF: W
start from the definition of the light-cone condition for
generic CMF orbit,

q5x1~ t !2x2~ t1q!, ~A1!

wherex1(t) represents the position of particle 1, assumed
the right, andx2(t) represents the position of particle 2
assumed on the left, and we have setc51 . Notice that Eq.
~2! is a special case of Eq.~A1! for symmetric orbits of the
equal-mass case@x2(t)52x1(t)#. The key observation is
that because the interaction is always repulsive, the velo
v1(t) of particle 1 is a monotonicallyincreasingfunction of
time ~particle 1 is repelled to the right!, while the velocity
v2(t) of particle 2 is a monotonicallydecreasingfunction of
time ~particle 2 is repelled to the left!. If we take the deriva-
tive of Eq. ~A1! with respect tot and isolateq̇, we obtain

q̇5
v1~ t !2v2~ t1q!

11v2~ t1q!
. ~A2!

For low energy we have the boundsuv2(t1q)u,v2(`)!1
and uv1(t)u,v1(`)!1, and therefore the denominator o
Eq. ~A2! is always positive. In the CMF, the value ofq̇
changes sign from the inbound asymptotic region to the o
bound asymptotic region, with values in the interval

2S v1~`!1v2~`!

11v2~`! D,q̇,S v1~`!1v2~`!

12v2~`! D . ~A3!

To complete the proof we need only to notice that the s
of two monotonically increasing functions@v1(t) and
2v2(t1q)] is also monotonically increasing and, therefor
9-13
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can only vanish once. It should be noticed that2v2(t1q) is
not necessarily a monotonically increasing function oft for
high-velocity orbits, as

dv2~ t1q!

dt
5~11q̇!

dv2~ t1q!

d~ t1q!
, ~A4!

which is the product of 11q̇ times a negative number@recall
thatv2(t) is a monotonically decreasing function of its arg
ment and therefore,2v2(t) is a monotonically increasing
function#. It can be seen that Eq.~A4! guarantees thatv2(t
1q) is an increasing function oft if (1 1q̇) is positive,
which is the case for a low-velocity orbit. A simple estima
for the first velocity where the twice-monotonic property c
fail in the equal-mass case is given by settinguq̇u51 in Eq.
~A3!, which predictsv(`)51/3.

APPENDIX B: COVARIANT DEFINITION OF THE
EQUAL-MASS CASE

In this appendix we exhibit a covariant derivation of t
above Hamiltonization procedure, which we develop o
for the equal-mass case and with the hypothesis that the
is twice monotonic~proved in Ref.@12# for low energies and
in Appendix A for arbitrary mass in the CMF!. The definition
of a covariant family starts from the observation that t
Lorentz transformation of a symmetric orbit has the prope
that the future of particle 1 is the past of particle 2 and v
versa. We define the relativistic symmetric family of orbi
henceforth called RSF, as the family of orbits with the pro
erty that if x1(t1)1x2(t2)50, then it follows thatt11t2
50. It is easy to verify that RSF is a Lorentz invariant fam
ily of orbits and also that any Lorentz transformation of
symmetric orbit belongs to RSF~but in principle these
should not exhaust the RSF: there could be other type
orbits!. A generic orbit of the RSF is represented in Fig.
where we illustrate the time-reversal-and-exchange sym
try. The above definition implies that the future of particle
is the past of particle 2 in the RSF. Inside the RSF, by us
the time-reversal operationz1→2j2 , z2→2j1, we can
prove the same identities~13!, ~14! and an equivalent form
of Eq. ~15!, relating particle 1 to particle 2~only that in case
b the role ofa andb is exchanged!, and these in turn lead to
the same type of general ghost Lagrangian to describ
twice-monotonic orbit.

The relativistic condition that the future of one particle
the past of the other implies that the solution of WF2B ins
the RSF must have the following branch corresponden
v1a

t,d(r a)5v2a
d,t(r a) andv1b

t,d(r b)5v2b
d,t(r b) ~see Fig. 7!. These

conditions can be seen with the help of Eqs.~31! and~32! to
be equivalent to the four conditions

]pa,b
t,d

]P
52

]pa,b
d,t

]P
, ~B1!
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]pa,b
t,d

]E
52

]pa,b
d,t

]E
.

The above conditions imply that the orbit is defined by fo
different functions6sa(r ), 6sb ,Fa(r ) andFb(r ) @see defi-
nitions ~36! and ~37!#. To verify that condition~B1! is rela-
tivistically invariant, let us suppose that we tried to descr
the orbit from another Lorentz frame, with boost parame
w. If the orbit is twice monotonic, it can be described in ca
a with a LagrangianL̄a of the same type as Eq.~20!, and a
Hamiltonian of type ~22!, and the new coordinate
x̄1a , t̄ 1a ,x̄1b , t̄ 1b must be obtained by a simple Lorentz tran
formation with boost parameterw. Imposing this condition
on the explicit solution~31!, and noticing that the advance
light-cone distance in the new frame is related to the old o
by dr̄a5A(11w)/(12w)dra , we obtain

] p̄a

]E
5

~12w!

~11w!

]pa

]E
, ~B2!

] p̄a

]P
5

]pa

]P
,

which, besides showing that Eq.~B1! is frame independent
also shows thatsa(r ) as defined by Eq.~36! is a Lorentz
scalar:

s̄a~ r̄ a!5sa~lar̄ a!, ~B3!

and thatFa(r a) @as defined by Eq.~37!# transforms like

FIG. 7. A typical trajectory of the RSF in a generic Loren
frame for the equal-mass case in the (x,t) plane; units withc51
ande25mc2. The only symmetry is that the future of particle 1
the past of particle 2.
9-14
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F̄a~ r̄ a!5la
2F~lar̄ a!, ~B4!

with la5A(12w)/(11w). Caseb transforms in the same
way with lb51/la . This last equation allows us to expre
the Hamiltonian in any frame by use of the CMF form
F(r ) and a rescaling depending on the boost parame
which can be determined by asymptotic data.

Last we show that the action of a Lorentz transformat
on Hamiltonian~22! is a canonical transformation: It is eas
to verify with the help of Eq.~4! that a Lorentz transforma
tion simply rescales the coordinatesj1 and j2 to j̄1

5(1/l)j1 and j̄25(1/l)j2 with l5A(12w)/(11w). To
complete the change with a canonical transformation,
must scale the momenta with the inverse factor,p̄15lp1 and
p̄25lp2. By this canonical transformation the transform
Hamiltonian is
o
n

,

e

ds

.

02621
r,

n

e

H̄a5
2l

4 H M̄1a
2 ~ r̄ a!

S p̄11
1

2
V̄1

e2

u j̄12 j̄2u
D

1
M̄2a

2 ~ r̄ a!

S p̄21
1

2
V̄1

e2

u j̄12 j̄2u
D J 2lf̄~ r̄ a!, ~B5!

where f̄( r̄ a)5(1/l)f(r a), V̄( r̄ a)5lV(r a), M̄1a
2 ( r̄ a)

5M1a
2 (r a), and M̄2a

2 ( r̄ a)5M2a
2 (r a). Notice that Hamil-

tonianH̄a picked a multiplicative factor ofl and if we also
perform a change to the natural evolution parameterz̄5lz
of the new Lorentz frame, it compensates exactly for t
factor, going back to the form~22!, the same form for all
Lorentz frames.
ce
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